RESUMO
This paper theoretically investigated the correlation between the open-shell electronic structure and third-order nonlinear optical (NLO) properties of one-dimensional (1D) stacked chains of π-radicals. By employing the finite N-mer models consisting of methyl or phenalenyl radicals with different stacking distances, we evaluated the average and standard deviation of diradical characters yi for N-mer models of π-radicals (yav and ySD). Then, we estimated these diradical characters at the limit of N â ∞. These y-based indices were helpful in discussing the correlation between the open-shell electronic structures and the second hyperpolarizability per dimer at the limit N â ∞, γ∞ for the 1D chains with stacking distance alternation (SDA). The calculated γ∞ values and the polymer/dimer ratio γ∞/γ(N = 2) were enhanced significantly when both the stacking distance and SDA are small. We also found that the spin-unrestricted long-range-corrected (LC-)UBLYP method with the range-separating parameter µ = 0.47 bohr-1 well reproduced the trend of γ∞ of this type of 1D chain estimated at the spin-unrestricted coupled-cluster levels. The present study is expected to contribute to establishing the design guidelines for future high-performance open-shell molecular NLO materials.
RESUMO
Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105â M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.
RESUMO
Norcorrole Ni(II) complexes have recently received considerable attention because they are readily accessible antiaromatic molecules. Their high stability under ambient conditions and ease of synthesis have enabled the exploration of the intrinsic properties of antiaromatic molecules. Here, we report the synthesis and properties of meso-meso singly linked porphyrin-norcorrole hybrids and a triply linked porphyrin-norcorrole hybrid. The singly linked and triply linked porphyrin-norcorrole hybrids were fully characterized, including an X-ray structural analysis. Due to their orthogonal conformation, the singly linked hybrids maintain the individual electronic properties of their porphyrin and norcorrole subunits, while the triply linked hybrid shows a significantly smaller electrochemical HOMO-LUMO gap (0.45â eV) than that of Ni(II) dimesitylnorcorrole (1.08â eV). Furthermore, the triply linked hybrid exhibits singlet diradical characteristics, as confirmed by VTâ NMR, ESR, and SQUID experiments.
RESUMO
Experimental and theoretical rationalization of bond-shift valence tautomerization, characterized by double-well potential surfaces, is one of the most challenging topics of study among the rich electronic properties of antiaromatic molecules. Although the pseudo-Jahn-Teller effect (PJTE) is an essential effect to provide attractive characteristics of 4nπ systems, an understanding of the structure-property relationship derived from the PJTE for planar 4nπ electron systems is still in its infancy. Herein, we describe the synthesis and characterization of two regioisomers of the thiophene-fused diareno[a,f]pentalenes 6 and 7. The magnetic and optoelectronic properties characterize these sulfur-doped diareno[a,f]pentalenes as open-shell antiaromatic molecules, in sharp contrast to the closed-shell antiaromatic systems of 3 and 5, in which these main cores consist of the same number of π electrons as 6 and 7. Notably, thiophene-fused 6b and 7b showed pronounced antiaromaticity, the strongest among the previous systems, as well as moderate open-shell characteristics. Our experimental and theoretical investigations concluded that these properties of 6b and 7b are derived from the small energy barrier Ea for the bond-shift valence tautomerization. The energy profile of the single crystal of 6b showed the temperature-dependent structural variations assigned to the dynamic mutual exchange between the two Cs-symmetric structures, which was also supported by changes in the chemical shifts of variable-temperature 1H NMR spectra in the solution phase. Both experimental and computational results revealed the importance of introducing heteroaromatic rings into 4nπ systems for controlling the PJTE and manifesting the antiaromatic and open-shell natures originating from the high-symmetric structure. The findings of this study advance the understanding of antiaromaticity characterized by the PJTE by controlling the energy barrier for bond-shift valence tautomerizations, potentially leading to the rational design of optoelectronic devices based on novel antiaromatic molecules possessing the strong contributions of their high-symmetric geometries.
RESUMO
An open-shell germylene 1 stabilized by a phenalenyl-based bidentate ligand was synthesized and characterized. Because of the high thermal stability originating from spin delocalization over the phenalenyl moiety, it was possible to isolate compound 1 in crystalline form by sublimation at ca. 300 °C. Electron spin resonance (ESR) spectra, crystallographic analysis, theoretical calculations, and reactivities with carbon radicals suggest that the spin of 1 is distributed on the phenalenyl moiety, while 1 reacted with C2Cl6, PhSSPh, and p-benzoquinone at the germanium center to form Ge-E (E = Cl, S, O) bonds. Furthermore, compound 1 is featured by its reactivity as a "formal germylyne", which allows for the formation of three new σ-bonds or one σ-bond with metal complexation on the germanium center.
RESUMO
Singlet fission (SF) occurs as a result of complex excited state relaxation dynamics in molecular aggregates, where a singlet exciton (FE) state is converted into a double-triplet exciton (TT) state through the interactions with several other degrees of freedom, such as nuclear motions. In this study, we combined quantum dynamics simulation based on the quantum master equation approach with all-atom-based classical molecular mechanics/molecular dynamics to examine the thermal structural fluctuation (i.e., static disorder) effects of intermolecular configuration on SF in pentacene crystal models. In particular, we considered two types of static-disordered models, in which excited states are assumed to interact with nuclear motions of intermolecular modes in the classical mechanical/statistical manner. We found that the introduction of static disorder effects leads to a faster decay of coherence between the FE and charge transfer (CT) states in the early stage of SF, contributing to the accelerations of several FE â TT relaxation pathways. Such acceleration in these models is shown to be attributed to fluctuations in the energies and electronic coupling of the CT states based on relative relaxation factor analysis. The present study is expected to contribute to further development of bottom-up materials design for efficient SF in condensed phases where the exitonic system interacts with nuclear motions in various coupling strengths.
RESUMO
Herein, the electron conductivities of [18]annulene and its derivatives are theoretically examined as a molecular parallel circuit model consisting of two linear polyenes. Their electron conductivities are estimated by elastic scattering Green's function (ESGF) theory and density functional theory (DFT) methods. The calculated conductivity of the [18]annulene does not follow the classical conductivity, i.e., Ohm's law, suggesting the importance of a quantum interference effect in single molecules. By introducing electron-withdrawing groups into the annulene framework, on the other hand, a spin-polarized electronic structure appears, and the quantum interference effect is significantly suppressed. In addition, the total current is affected by the spin polarization because of the asymmetry in the coupling constant between the molecule and electrodes. From these results, it is suggested that the electron conductivity as well as the quantum interference effect of π-conjugated molecular systems can be designed using their open-shell nature, which is chemically controlled by the substituents.
RESUMO
We present the experimental visualization of the valence-electron-density distribution in benzene and its kinetically stabilized heavier-element analogues, i.e., 1,2-disilabenzene and 1,2-digermabenzene. The valence-electron-density-distribution (EDD) analysis on the 1,2-disila- and 1,2-digermabenzenes revealed that these contain incompletely delocalized π electrons on their cyclic conjugation systems, making them less aromatic compared to benzene. Based on the results of this EDD analysis in combination with anisotropy of the current-induced density (ACID) calculations, considerable contributions from the characteristic resonance structures of 1,2-disila- and 1,2-digermabenzenes with cleaved EîE bonds can be expected.
RESUMO
Four difluorenoheteroles having a central quinoidal core with the heteroring varying as furan, thiophene, its dioxide derivative and pyrrole have shown to be medium character diradicals. Solid-state structures, optical, photophysical, magnetic, and electrochemical properties have been discussed in terms of diradical character, variation of aromatic character and captodative effects (electron affinity). Organic field-effect transistors (OFETs) have been prepared, showing balanced hole and electron mobilities of the order of 10-3 â cm2 V-1 s-1 or ambipolar charge transport which is first inferred from their redox amphoterism. Quantum chemical calculations show that the electrical behavior is originated from the medium diradical character which produces similar reorganization energies for hole and electron transports. The vision of a diradical as simultaneously bearing pseudo-hole and pseudo-electron defects might justify the reduced values of reorganization energies for both regimes. Structure-function relationships between diradical and ambipolar electrical behavior are revealed.
RESUMO
Bis-periazulene (cyclohepta[def]fluorene), which is an unknown pyrene isomer, was synthesized as kinetically protected forms. Its triaryl derivatives 1c-e exhibited the superimposed electronic structures of peripheral, polarized, and open-shell π-conjugated systems. In contrast to previous theoretical predictions, bis-periazulene derivatives were in the singlet ground state. Changing an aryl group controlled the energy gap between the lowest singlet-triplet states.
Assuntos
Fluorenos , Pirenos , Fluorenos/química , IsomerismoRESUMO
The dianion and dication of tetramesityl-substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five- and six-membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene-within-an-annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X-ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the 13 C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22-π and 18-π electron outer perimeters, respectively, and 8-π electron structure at the inner ring. Notably, the dianion has an open-shell character, whereas the dication has a closed-shell ground state.
RESUMO
We examine the effects of fusing two benzofurans to s-indacene (indacenodibenzofurans, IDBFs) and dicyclopenta[b,g]naphthalene (indenoindenodibenzofurans, IIDBFs) to control the strong antiaromaticity and diradical character of these core units. Synthesis via 3-functionalized benzofuran yields syn-IDBF and syn-IIDBF. syn-IDBF possesses a high degree of paratropicity, exceeding that of the parent hydrocarbon, which in turn results in strong diradical character for syn-IIDBF. In the case of the anti-isomers, synthesized via 2-substituted benzofurans, these effects are decreased; however, both derivatives undergo an unexpected ring-opening reaction during the final dearomatization step. All the results are compared to the benzothiophene-fused analogues and show that the increased electronegativity of oxygen in the syn-fused derivatives leads to enhancement of the antiaromatic core causing greater paratropicity. For syn-IIDBF increased diradical character results from rearomati-zation of the core naphthalene unit in order to relieve this paratropicity.
RESUMO
We report on our investigation of C-C bonding longer than 2.0 Å, which can be realized by perpendicularly facing two fluorenyl rings in the title compound. A small orbital overlap between the distantly positioned carbon atoms is observed as a small concentration of electrons on the X-ray electron density map. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the compound originate from the in-phase and out-of-phase interactions of the overlapping orbitals, respectively, with a gap of 2.39 eV. Solid-state 13C NMR spectroscopy shows a sharp peak at 82.9 ppm for the long-bonded carbons, and a CASSCF(6,6) calculation indicates small diradical character. The experimental and theoretical analyses reveal sufficient covalent-bonding interaction in the long-bonded carbon pair.
RESUMO
The singlet open-shell character and antiaromaticity are intriguing features in π-conjugated carbocycles. These two exhibit similar chemical and physical properties. However, they rarely coexist in the same molecule. Understanding the interrelation between the open-shell and antiaromatic characteristics in the same molecule is crucial to control the electronic properties. Herein we describe the synthesis and characterization of a new member of diareno[a,f]pentalene, benzo[a]naphtho[2,3-f]pentalene 6. Unlike its isomer 5 with a closed-shell ground state, 6 exhibits an appreciable open-shell character and a moderate antiaromatic feature. The behaviors of the open-shell index (y0 ) against the difference of the proton chemical signal (Δδ(H1 )) between pentalenide dianions/neutral pentalenes for our reported pentalenes 1, 4, 5, and 6 give a thought-provoking conclusion about the interrelation between open-shell and antiaromatic characteristics in this series. The mode of the incorporated quinoidal moiety and the formal molecular symmetry are critical to balance these two characteristics.
RESUMO
We investigate the relationships between open-shell character and longitudinal static second hyperpolarizabilities γ for one-hole-doped diradicaloids using the strong-correlated ab initio molecular orbital methods and simple one-dimensional (1D) three-site two-electron (3s-2e) models. As examples of one-hole-doped diradicaloids, we examine H3 +, methyl radical trimer cation ((CH3)3 +), silyl radical trimer cation ((SiH3)3 +), and 1,2,3,5-dithiadizolyl trimer cation (DTDA3 +). For H3 +, the static γ exhibits negative values and shows a monotonic increase in amplitude with an increase in the open-shell character defined by a neighbor-site interaction (y S). On the other hand, it is found for (CH3)3 +, (SiH3)3 +, and DTDA3 + that the static γ value exhibits similar behavior to that for H3 + up to an intermediate y S value, while it takes the negative maximum at a large y S value, followed by a decrease in γ amplitude, and subsequently, γ changes to positive values with a drastic increase for larger y S values. For example, in DTDA3 +, the negative/positive γ values, -69 × 105/700 × 105 au at y S = 0.75/0.87, exhibit significant enhancements in amplitude, 2.4/24 times as large as that (-29 × 105 au) at intermediate y S = 0.59 as is often the case in DTDA2. Using the 1D 3s-2e valence-bond configuration interaction model, these sign inversions and drastic increase in the amplitude of γ are found to originate in the differences in Coulomb interactions between valence electrons, between valence and core electrons, and between valence electrons and nuclei. These results contribute to pave the way for the construction of novel control guidelines for the amplitude and sign of γ for one-hole-doped diradicaloids.
RESUMO
The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization that the neutral diradicals while the radical anions, contrarily, are stabilized by aromatization of the central core. The synthesis of the fluorenofluorene series and their characterization by electronic absorption and vibrational Raman spectroscopies, X-ray diffraction, SQUID measurements, electrochemistry, in situ UV-vis-NIR absorption spectroelectrochemistry, and theoretical calculations are presented. This work attempts to unify the properties of different series of diradicaloids in a common argument as well as the properties of the carbocations and carbanions derived from them.
RESUMO
The ability to alter optoelectronic and magnetic properties of molecules at a late stage in their preparation is in general a nontrivial feat. Here, we report the late-stage oxidation of benzothiophene-fused indacenes and dicyclopentanaphthalenes to their corresponding sulfone derivatives. We find that while such modifications increase the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap to a small degree, other properties such as HOMO and LUMO energy levels, molecule paratropicity, and singlet-triplet energy gaps are influenced to a greater degree. The most surprising finding is a change of the bond alternation pattern within the s-indacene core of the sulfones. Computations corroborate the experimental findings and offer plausible explanations for these changes in molecular properties.
Assuntos
Eletrônica , Fluorenos , Modelos Moleculares , EnxofreRESUMO
Upon photon absorption, π-conjugated organics are apt to undergo ultrafast structural reorganization via electron-vibrational coupling during non-adiabatic transitions. Ultrafast nuclear motions modulate local planarity and quinoid/benzenoid characters within conjugated backbones, which control primary events in the excited states, such as localization, energy transfer, and so on. Femtosecond broadband fluorescence upconversion measurements were conducted to investigate exciton self-trapping and delocalization in cycloparaphenylenes as ultrafast structural reorganizations are achieved via excited-state symmetry-dependent electron-vibrational coupling. By accessing two high-lying excited states, one-photon and two-photon allowed states, a clear discrepancy in the initial time-resolved fluorescence spectra and the temporal dynamics/spectral evolution of fluorescence spectra were monitored. Combined with quantum chemical calculations, a novel insight into the effect of the excited-state symmetry on ultrafast structural reorganization and exciton self-trapping in the emerging class of π-conjugated materials is provided.
RESUMO
In this study, we theoretically investigate the aromatic and open-shell characteristics of carbon nanobelts (CNBs) composed of five- and six-membered rings. We have designed nanobelts composed of indeno[1,2-b]fluorene ([1,2-b]IF) units, which are referred to as [N]IF-CNB (N: the number of five-membered rings). The number of π-electrons, n π, in neutral [N]IF-CNB is 7N, and thus depending on N and charge states, n π can be 4n + 2 and 4n. Quantum chemical calculations on neutral [6]IF-CNB and [8]IF-CNB and dicationic [8]IF-CNB2+ have revealed that they are expected to exhibit unique aromatic and open-shell characteristics depending on n π, there are several analogies of the electronic structures in [N]IF-CNB to those in [N]annulene. Delocalized and intermediate open-shell electronic structures of [N]IF-CNB are also useful to drastically change the third-order nonlinear optical properties. These results suggest that theoretically designed [N]IF-CNB can be attractive and challenging targets of organic synthesis for realizing novel open-shell functional conjugated macrocycles.
RESUMO
Isolation and structural characterization of hypervalent electron-rich pentacoordinate nitrogen species have not been achieved despite continuous attempts for over a century. Herein we report the first synthesis and isolation of air stable hypervalent electron-rich pentacoordinate nitrogen cationic radical (11-N-5) species from oxidation of their corresponding neutral (12-N-5) species. In the cationic radical species, the nitrogen centers adopt a trigonal bipyramidal geometry featuring a 3-center-5-electron hypervalent attractive interaction. The combination of single crystal X-ray diffraction analysis and computational studies revealed weak N-O interactions between the central nitrogen cation and oxygen atoms. This successful design strategy and isolation of air-stable pentacoordinate hypervalent nitrogen species allow further investigations on reactivity and properties resulting from these unusually weakly coordinating interactions in nitrogen compounds.