Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 93, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788249

RESUMO

Hepatocytes are a major parenchymal cell type in the liver and play an essential role in liver function. Hepatocyte-like cells can be differentiated in vitro from induced pluripotent stem cells (iPSCs) via definitive endoderm (DE)-like cells and hepatoblast-like cells. Here, we explored the in vitro differentiation time-course of hepatocyte-like cells. We performed methylome and transcriptome analyses for hepatocyte-like cell differentiation. We also analyzed DE-like cell differentiation by methylome, transcriptome, chromatin accessibility, and GATA6 binding profiles, using finer time-course samples. In this manuscript, we provide a detailed description of the dataset and the technical validations. Our data may be valuable for the analysis of the molecular mechanisms underlying hepatocyte and DE differentiations.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Endoderma , Hepatócitos , Fígado
2.
Commun Biol ; 5(1): 414, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508708

RESUMO

Hepatocytes are the dominant cell type in the human liver, with functions in metabolism, detoxification, and producing secreted proteins. Although gene regulation and master transcription factors involved in the hepatocyte differentiation have been extensively investigated, little is known about how the epigenome is regulated, particularly the dynamics of DNA methylation and the critical upstream factors. Here, by examining changes in the transcriptome and the methylome using an in vitro hepatocyte differentiation model, we show putative DNA methylation-regulating transcription factors, which are likely involved in DNA demethylation and maintenance of hypo-methylation in a differentiation stage-specific manner. Of these factors, we further reveal that GATA6 induces DNA demethylation together with chromatin activation in a binding-site-specific manner during endoderm differentiation. These results provide an insight into the spatiotemporal regulatory mechanisms exerted on the DNA methylation landscape by transcription factors and uncover an epigenetic role for transcription factors in early liver development.


Assuntos
Metilação de DNA , Fator de Transcrição GATA6 , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Hepatócitos/metabolismo , Humanos
3.
Chromosome Res ; 30(1): 109-121, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142952

RESUMO

DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site. We applied the pipeline to International Human Epigenome Consortium methylome data and selected 393 candidate transcription factor binding motifs and associated 383 TFs that are likely associated with DNA demethylation. Validation of a subset of the candidate TFs using an in vitro assay suggested that 28 of 49 TFs from various TF families had DNA-demethylation-promoting activity; TF families, such as bHLH and ETS, contained both TFs with and without the activity. The identified TFs showed large demethylated/methylated CpG ratios and their demethylated CpGs showed significant bias toward hypermethylation in original cells. Furthermore, the identified TFs promoted demethylation of distinct sets of CpGs, with slight overlap of the targeted CpGs among TF family members, which was consistent with the results of a gene ontology (GO) term analysis of the identified TFs. Gene expression analysis of the identified TFs revealed that multiple TFs from various families are specifically expressed in human cells and tissues. Together, our results suggest that a large number of TFs from various TF families are associated with cell-type-specific DNA demethylation during human cellular development.


Assuntos
Desmetilação do DNA , Fatores de Transcrição , Animais , Sítios de Ligação , DNA/metabolismo , Metilação de DNA , Genoma , Humanos , Mamíferos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Science ; 373(6552)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437124

RESUMO

Oocytes mature in a specialized fluid-filled sac, the ovarian follicle, which provides signals needed for meiosis and germ cell growth. Methods have been developed to generate functional oocytes from pluripotent stem cell-derived primordial germ cell-like cells (PGCLCs) when placed in culture with embryonic ovarian somatic cells. In this study, we developed culture conditions to recreate the stepwise differentiation process from pluripotent cells to fetal ovarian somatic cell-like cells (FOSLCs). When FOSLCs were aggregated with PGCLCs derived from mouse embryonic stem cells, the PGCLCs entered meiosis to generate functional oocytes capable of fertilization and development to live offspring. Generating functional mouse oocytes in a reconstituted ovarian environment provides a method for in vitro oocyte production and follicle generation for a better understanding of mammalian reproduction.


Assuntos
Células-Tronco Embrionárias Murinas/fisiologia , Oócitos/fisiologia , Oogênese , Folículo Ovariano/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Masculino , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Embrionárias Murinas/citologia , Oócitos/citologia , Folículo Ovariano/embriologia , Folículo Ovariano/fisiologia , RNA-Seq , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Transcriptoma
5.
Stem Cell Reports ; 16(4): 810-824, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711266

RESUMO

Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specification and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage to measure dynamic molecular changes at the single-cell resolution. Here, we multiplex and ectopically express 20 pro-neuronal transcription factors in human dermal fibroblasts and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions. Single-cell RNA-seq analysis reveals diverse and distinct neuronal subtypes, including reprogramming processes that strongly correlate with the developing brain. Gene mapping of 20 exogenous pro-neuronal transcription factors further unveiled key determinants responsible for neuronal lineage specification and a regulatory logic dictating neuronal diversification, including glutamatergic and cholinergic neurons. The multiplex scRNA-seq approach is a robust and scalable approach to elucidate lineage and cellular specification across various biological systems.


Assuntos
Neurônios/metabolismo , RNA-Seq , Análise de Célula Única , Neurônios Colinérgicos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glutamatos/metabolismo , Humanos , Recém-Nascido , Neurônios/citologia , Fator de Transcrição PAX6/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 9(1): 6490, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019211

RESUMO

Mesenchymal-to-epithelial transition (MET) is an important step in cell reprogramming from fibroblasts (a cell type frequently used for this purpose) to various epithelial cell types. However, the mechanism underlying MET induction in fibroblasts remains to be understood. The present study aimed to identify the transcription factors (TFs) that efficiently induce MET in dermal fibroblasts. OVOL2 was identified as a potent inducer of key epithelial genes, and OVOL2 cooperatively enhanced MET induced by HNF1A, TP63, and KLF4, which are known reprogramming TFs to epithelial lineages. In TP63/KLF4-induced keratinocyte-like cell-state reprogramming, OVOL2 greatly facilitated the activation of epithelial and keratinocyte-specific genes. This was accompanied by enhanced changes in chromatin accessibility across the genome. Mechanistically, motif enrichment analysis revealed that the target loci of KLF4 and TP63 become accessible upon induction of TFs, whereas the OVOL2 target loci become inaccessible. This indicates that KLF4 and TP63 positively regulate keratinocyte-associated genes whereas OVOL2 suppresses fibroblast-associated genes. The exogenous expression of OVOL2 therefore disrupts fibroblast lineage identity and facilitates fibroblast cell reprogramming into epithelial lineages cooperatively with tissue-specific reprogramming factors. Identification of OVOL2 as an MET inducer and an epithelial reprogramming enhancer in fibroblasts provides new insights into cellular reprogramming improvement for future applications.


Assuntos
Reprogramação Celular/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Expressão Gênica , Fatores de Transcrição/genética , Linhagem da Célula/genética , Transdiferenciação Celular/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Derme/citologia , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Recém-Nascido , Fator 4 Semelhante a Kruppel , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo
7.
Epigenetics Chromatin ; 10(1): 60, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29221486

RESUMO

BACKGROUND: DNA methylation is a fundamental epigenetic modification that is involved in many biological systems such as differentiation and disease. We and others recently showed that some transcription factors (TFs) are involved in the site-specific determination of DNA demethylation in a binding site-directed manner, although the reports of such TFs are limited. RESULTS: Here, we develop a screening system to identify TFs that induce binding site-directed DNA methylation changes. The system involves the ectopic expression of target TFs in model cells followed by DNA methylome analysis and overrepresentation analysis of the corresponding TF binding motif at differentially methylated regions. It successfully identified binding site-directed demethylation of SPI1, which is known to promote DNA demethylation in a binding site-directed manner. We extended our screening system to 15 master TFs involved in cellular differentiation and identified eight novel binding site-directed DNA demethylation-inducing TFs (RUNX3, GATA2, CEBPB, MAFB, NR4A2, MYOD1, CEBPA, and TBX5). Gene ontology and tissue enrichment analysis revealed that these TFs demethylate genomic regions associated with corresponding biological roles. We also describe the characteristics of binding site-directed DNA demethylation induced by these TFs, including the targeting of highly methylated CpGs, local DNA demethylation, and the overlap of demethylated regions between TFs of the same family. CONCLUSIONS: Our results show the usefulness of the developed screening system for the identification of TFs that induce DNA demethylation in a site-directed manner.


Assuntos
Desmetilação , Fatores de Transcrição/metabolismo , Sítios de Ligação , Metilação de DNA
9.
BMC Mol Biol ; 18(1): 9, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376714

RESUMO

BACKGROUND: SPI1 is an essential transcription factor (TF) for the hematopoietic lineage, in which its expression is tightly controlled through a -17-kb upstream regulatory region and a promoter region. Both regulatory regions are demethylated during hematopoietic development, although how the change of DNA methylation status is performed is still unknown. RESULTS: We found that the ectopic overexpression of RUNX1 (another key TF in hematopoiesis) in HEK-293T cells induces almost complete DNA demethylation at the -17-kb upstream regulatory region and partial but significant DNA demethylation at the proximal promoter region. This DNA demethylation occurred in mitomycin-C-treated nonproliferating cells at both regulatory regions, suggesting active DNA demethylation. Furthermore, ectopic RUNX1 expression induced significant endogenous SPI1 expression, although its expression level was much lower than that of natively SPI1-expressing monocyte cells. CONCLUSIONS: These results suggest the novel role of RUNX1 as an inducer of DNA demethylation at the SPI1 regulatory regions, although the mechanism of RUNX1-induced DNA demethylation remains to be explored.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Metilação de DNA , Replicação do DNA , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Sequência de Bases , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Regulação para Cima
10.
Blood Adv ; 1(20): 1699-1711, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29296817

RESUMO

RUNX1 is an essential master transcription factor in hematopoietic development and plays important roles in immune functions. Although the gene regulatory mechanism of RUNX1 has been characterized extensively, the epigenetic role of RUNX1 remains unclear. Here, we demonstrate that RUNX1 contributes DNA demethylation in a binding site-directed manner in human hematopoietic cells. Overexpression analysis of RUNX1 showed the RUNX1-binding site-directed DNA demethylation. The RUNX1-mediated DNA demethylation was also observed in DNA replication-arrested cells, suggesting an involvement of active demethylation mechanism. Coimmunoprecipitation in hematopoietic cells showed physical interactions between RUNX1 and DNA demethylation machinery enzymes TET2, TET3, TDG, and GADD45. Further chromatin immunoprecipitation sequencing revealed colocalization of RUNX1 and TET2 in the same genomic regions, indicating recruitment of DNA demethylation machinery by RUNX1. Finally, methylome analysis revealed significant overrepresentation of RUNX1-binding sites at demethylated regions during hematopoietic development. Collectively, the present data provide evidence that RUNX1 contributes site specificity of DNA demethylation by recruitment of TET and other demethylation-related enzymes to its binding sites in hematopoietic cells.

11.
PLoS One ; 11(8): e0160459, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27483142

RESUMO

Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Monócitos/metabolismo , Transcrição Gênica , Linhagem Celular , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Análise em Microsséries , Monócitos/citologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Pele/citologia , Pele/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
12.
Nucleic Acids Res ; 40(21): e165, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22879381

RESUMO

Combinatorial interactions of transcription modulators are critical to regulate cell-specific expression and to drive direct cell reprogramming (e.g. trans-differentiation). However, the identification of key transcription modulators from myriad of candidate genes is laborious and time consuming. To rapidly identify key regulatory factors involved in direct cell reprogramming, we established a multiplex single-cell screening system using a fibroblast-to-monocyte transition model. The system implements a single-cell 'shotgun-transduction' strategy followed by nested-single-cell-polymerase chain reaction (Nesc-PCR) gene expression analysis. To demonstrate this, we simultaneously transduced 18 monocyte-enriched transcription modulators in fibroblasts followed by selection of single cells expressing monocyte-specific CD14 and HLA-DR cell-surface markers from a heterogeneous population. Highly multiplex Nesc-PCR expression analysis revealed a variety of gene combinations with a significant enrichment of SPI1 (86/86) and a novel transcriptional modulator, HCLS1 (76/86), in the CD14(+)/HLA-DR(+) single cells. We could further demonstrate the synergistic role of HCLS1 in regulating monocyte-specific gene expressions and phagocytosis in dermal fibroblasts in the presence of SPI1. This study establishes a platform for a multiplex single-cell screening of combinatorial transcription modulators to drive any direct cell reprogramming.


Assuntos
Transdiferenciação Celular/genética , Análise de Célula Única/métodos , Transcrição Gênica , Células Cultivadas , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Lentivirus/genética , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo
13.
PLoS One ; 6(4): e18956, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21572517

RESUMO

BACKGROUND: Pandemic influenza A(H1N1) virus infection quickly circulated worldwide in 2009. In Japan, the first case was reported in May 2009, one month after its outbreak in Mexico. Thereafter, A(H1N1) infection spread widely throughout the country. It is of great importance to profile and understand the situation regarding viral mutations and their circulation in Japan to accumulate a knowledge base and to prepare clinical response platforms before a second pandemic (pdm) wave emerges. METHODOLOGY: A total of 253 swab samples were collected from patients with influenza-like illness in the Osaka, Tokyo, and Chiba areas both in May 2009 and between October 2009 and January 2010. We analyzed partial sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of the 2009 pdm influenza virus in the collected clinical samples. By phylogenetic analysis, we identified major variants of the 2009 pdm influenza virus and critical mutations associated with severe cases, including drug-resistance mutations. RESULTS AND CONCLUSIONS: Our sequence analysis has revealed that both HA-S220T and NA-N248D are major non-synonymous mutations that clearly discriminate the 2009 pdm influenza viruses identified in the very early phase (May 2009) from those found in the peak phase (October 2009 to January 2010) in Japan. By phylogenetic analysis, we found 14 micro-clades within the viruses collected during the peak phase. Among them, 12 were new micro-clades, while two were previously reported. Oseltamivir resistance-related mutations, i.e., NA-H275Y and NA-N295S, were also detected in sporadic cases in Osaka and Tokyo.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Mutação , Proteínas Virais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Antivirais/farmacologia , Teorema de Bayes , Análise por Conglomerados , Análise Mutacional de DNA , Farmacorresistência Viral/genética , Hemaglutininas Virais/química , Hemaglutininas Virais/classificação , Hemaglutininas Virais/genética , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Japão/epidemiologia , Modelos Moleculares , Dados de Sequência Molecular , Neuraminidase/química , Neuraminidase/classificação , Neuraminidase/genética , Oseltamivir/farmacologia , Pandemias , Filogenia , Conformação Proteica , Multimerização Proteica , Estações do Ano , Proteínas Virais/química , Proteínas Virais/classificação
14.
Genome Res ; 20(2): 257-64, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20051556

RESUMO

MicroRNAs (miRNAs) are short (20-23 nt) RNAs that are sequence-specific mediators of transcriptional and post-transcriptional regulation of gene expression. Modern high-throughput technologies enable deep sequencing of such RNA species on an unprecedented scale. We find that the analysis of small RNA deep-sequencing libraries can be affected by cross-mapping, in which RNA sequences originating from one locus are inadvertently mapped to another. Similar to cross-hybridization on microarrays, cross-mapping is prevalent among miRNAs, as they tend to occur in families, are similar or derived from repeat or structural RNAs, or are post-transcriptionally modified. Here, we develop a strategy to correct for cross-mapping, and apply it to the analysis of RNA editing in mature miRNAs. In contrast to previous reports, our analysis suggests that RNA editing in mature miRNAs is rare in animals.


Assuntos
Biblioteca Gênica , MicroRNAs/genética , Edição de RNA/genética , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , MicroRNAs/metabolismo
15.
J Biosci Bioeng ; 100(6): 613-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16473769

RESUMO

We reported previously that high hydrostatic pressure-injured stationary phase cells of Escherichia coli K-12 lost their intrinsic deoxycholate tolerance. The AcrAB-TolC multi-drug resistance pump driven by proton motive force has been argued to be responsible for the tolerance to deoxycholate. In this report, we tested the sensitivity of the AcrAB-TolC (three components) pump to high hydrostatic pressure treatment (HPT). E. coli K-12 treated with HPT became sensitive to AcrAB-TolC-specific drugs such as ethidium bromide, but not to tetracycline which is pumped out by a one-component transporter, Tet. Only E. coli K-12 overproducing both AcrAB and TolC exhibited restored tolerance to deoxycholate after HPT but not E. coli overproducing either TolC or AcrAB. These observations strongly suggest that three-component pumps such as AcrAB-TolC are more susceptible to HPT than one-component pumps such as Tet, resulting in the differential loss of deoxycholate tolerance in high hydrostatic pressure-injured E. coli cells.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Ácido Desoxicólico/farmacologia , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Pressão Hidrostática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA