Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(5): 917-932, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377887

RESUMO

Tumor-infiltrating lymphocytes (TIL) that can recognize and kill tumor cells have curative potential in subsets of patients treated with adoptive cell transfer (ACT). However, lack of TIL therapeutic efficacy in many patients may be due in large part to a paucity of tumor-reactive T cells in TIL and the exhausted and terminally differentiated status of those tumor-reactive T cells. We sought to reprogram exhausted TIL that possess T-cell receptors (TCR) specific for tumor antigens into induced pluripotent stem cells (iPSC) to rejuvenate them for more potent ACT. We first attempted to reprogram tumor neoantigen-specific TIL by αCD3 Ab prestimulation which resulted in failure of establishing tumor-reactive TIL-iPSCs, instead, T cell-derived iPSCs from bystander T cells were established. To selectively activate and enrich tumor-reactive T cells from the heterogenous TIL population, CD8+ PD-1+ 4-1BB+ TIL population were isolated after coculture with autologous tumor cells, followed by direct reprogramming into iPSCs. TCR sequencing analysis of the resulting iPSC clones revealed that reprogrammed TIL-iPSCs encoded TCRs that were identical to the pre-identified tumor-reactive TCRs found in minimally cultured TIL. Moreover, reprogrammed TIL-iPSCs contained rare tumor antigen-specific TCRs, which were not detectable by TCR sequencing of the starting cell population. Thus, reprogramming of PD-1+ 4-1BB+ TIL after coculture with autologous tumor cells selectively generates tumor antigen-specific TIL-iPSCs, and is a distinctive method to enrich and identify tumor antigen-specific TCRs of low frequency from TIL. Significance: Reprogramming of TIL into iPSC holds great promise for the future treatment of cancer due to their rejuvenated nature and the retention of tumor-specific TCRs. One limitation is the lack of selective and efficient methods for reprogramming tumor-specific T cells from polyclonal TIL. Here we addressed this limitation and present a method to efficiently reprogram TIL into iPSC colonies carrying diverse tumor antigen reactive TCR recombination.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1 , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Antígenos de Neoplasias
3.
Med ; 3(10): 682-704.e8, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36007524

RESUMO

BACKGROUND: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice. Here, we investigate the mechanistic role of CISH in regulating human T cell effector function in solid tumors and demonstrate that CRISPR/Cas9 disruption of CISH enhances TIL neoantigen recognition and response to checkpoint blockade. METHODS: Single-cell gene expression profiling was used to identify a negative correlation between high CISH expression and TIL activation in patient-derived TIL. A GMP-compliant CRISPR/Cas9 gene editing process was developed to assess the impact of CISH disruption on the molecular and functional phenotype of human peripheral blood T cells and TIL. Tumor-specific T cells with disrupted Cish function were adoptively transferred into tumor-bearing mice and evaluated for efficacy with or without checkpoint blockade. FINDINGS: CISH expression was associated with T cell dysfunction. CISH deletion using CRISPR/Cas9 resulted in hyper-activation and improved functional avidity against tumor-derived neoantigens without perturbing T cell maturation. Cish knockout resulted in increased susceptibility to checkpoint blockade in vivo. CONCLUSIONS: CISH negatively regulates human T cell effector function, and its genetic disruption offers a novel avenue to improve the therapeutic efficacy of adoptive TIL therapy. FUNDING: This study was funded by Intima Bioscience, U.S. and in part through the Intramural program CCR at the National Cancer Institute.


Assuntos
Linfócitos do Interstício Tumoral , Linfócitos T , Transferência Adotiva , Animais , Citocinas/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos
5.
Cell Rep ; 40(5): 111153, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926468

RESUMO

Adoptive T cell therapies (ACT) have been curative for a limited number of cancer patients. The sensitization of cancer cells to T cell killing may expand the benefit of these therapies for more patients. To this end, we use a three-step approach to identify cancer genes that disfavor T cell immunity. First, we profile gene transcripts upregulated by cancer under selection pressure from T cell killing. Second, we identify potential tumor gene targets and pathways that disfavor T cell killing using signaling pathway activation libraries and genome-wide loss-of-function CRISPR-Cas9 screens. Finally, we implement pharmacological perturbation screens to validate these targets and identify BIRC2, ITGAV, DNPEP, BCL2, and ERRα as potential ACT-drug combination candidates. Here, we establish that BIRC2 limits antigen presentation and T cell recognition of tumor cells by suppressing IRF1 activity and provide evidence that BIRC2 inhibition in combination with ACT is an effective strategy to increase efficacy.


Assuntos
Neoplasias , Linfócitos T , Apresentação de Antígeno , Sistemas CRISPR-Cas/genética , Humanos , Neoplasias/genética , Oncogenes , Análise de Sistemas
6.
Nat Med ; 28(7): 1421-1431, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35501486

RESUMO

Despite breakthroughs in cancer immunotherapy, most tumor-reactive T cells cannot persist in solid tumors due to an immunosuppressive environment. We developed Tres (tumor-resilient T cell), a computational model utilizing single-cell transcriptomic data to identify signatures of T cells that are resilient to immunosuppressive signals, such as transforming growth factor-ß1, tumor necrosis factor-related apoptosis-inducing ligand and prostaglandin E2. Tres reliably predicts clinical responses to immunotherapy in melanoma, lung cancer, triple-negative breast cancer and B cell malignancies using bulk T cell transcriptomic data from pre-treatment tumors from patients who received immune-checkpoint inhibitors (n = 38), infusion products for chimeric antigen receptor T cell therapies (n = 34) and pre-manufacture samples for chimeric antigen receptor T cell or tumor-infiltrating lymphocyte therapies (n = 84). Further, Tres identified FIBP, whose functions are largely unknown, as the top negative marker of tumor-resilient T cells across many solid tumor types. FIBP knockouts in murine and human donor CD8+ T cells significantly enhanced T cell-mediated cancer killing in in vitro co-cultures. Further, Fibp knockout in murine T cells potentiated the in vivo efficacy of adoptive cell transfer in the B16 tumor model. Fibp knockout T cells exhibit reduced cholesterol metabolism, which inhibits effector T cell function. These results demonstrate the utility of Tres in identifying biomarkers of T cell effectiveness and potential therapeutic targets for immunotherapies in solid tumors.


Assuntos
Melanoma , Receptores de Antígenos Quiméricos , Animais , Linfócitos T CD8-Positivos , Proteínas de Transporte , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Proteínas de Membrana , Camundongos
7.
Curr Opin Immunol ; 74: 39-45, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710751

RESUMO

The administration of T cells as cellular therapy against advanced cancers has brought clinical benefit to many patients and has progressed the field of cancer research. However, current cell therapy treatments are not curative in most patients, particularly in those with solid tumors, and it remains to be seen how broadly and efficaciously they may be applied going forward. Recent research has begun to elucidate key factors that regulate the efficacy of cell therapy in cancer patients, including T cell stemness and the ability to effectively target tumor antigens and overcome tumor heterogeneity. In this review, we discuss key properties of clinically effective anti-cancer T cell therapies along with strategies to improve T cell characteristics to augment clinical efficacy in solid tumors.


Assuntos
Neoplasias , Linfócitos T , Antígenos de Neoplasias , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Imunoterapia Adotiva , Neoplasias/patologia
8.
J Med Chem ; 64(17): 12651-12669, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415160

RESUMO

We previously described the development of a DNA-alkylating compound that showed selective toxicity in breast cancer cells. This compound contained an estrogen receptor α (ERα)-binding ligand and a DNA-binding/methylating component that could selectively methylate the N3-position of adenines at adenine-thymine rich regions of DNA. Herein, we describe mechanistic investigations that demonstrate that this class of compounds facilitate the translocation of the ERα-compound complex to the nucleus and induce the expression of ERα target genes. We confirm that the compounds show selective toxicity in ERα-expressing cells, induce ERα localization in the nucleus, and verify the essential role of ERα in modulating the toxicity. Minor alterations in the compound structure significantly affects the DNA binding ability, which correlates to the DNA-methylating ability. These studies demonstrate the utility of DNA-alkylating compounds to accomplish targeted inhibition of the growth of specific cancer cells; an approach that may overcome shortcomings of currently used chemotherapy agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
9.
Immunity ; 54(1): 116-131.e10, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271120

RESUMO

Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.


Assuntos
Linfócitos B/fisiologia , Biomarcadores Tumorais/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Linfoma Difuso de Grandes Células B/genética , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Estudo de Associação Genômica Ampla , Antígenos HLA/metabolismo , Humanos , Vigilância Imunológica , Linfoma Difuso de Grandes Células B/metabolismo , Evasão Tumoral/genética
10.
Cell ; 183(3): 591-593, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125888

RESUMO

Targeting cancer neoantigens generated by tumor-exclusive somatic mutations is an attractive yet challenging strategy for the robust and specific elimination of tumor cells by cellular immunotherapy. In this issue of Cell, Wells et al. describe a consortium-based approach to optimize bioinformatics pipelines to sensitively and accurately predict immunogenic neoantigens from next-generation sequencing data.


Assuntos
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Epitopos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia
11.
Cancer Cell ; 37(6): 818-833.e9, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32516591

RESUMO

T cells are central to all currently effective cancer immunotherapies, but the characteristics defining therapeutically effective anti-tumor T cells have not been comprehensively elucidated. Here, we delineate four phenotypic qualities of effective anti-tumor T cells: cell expansion, differentiation, oxidative stress, and genomic stress. Using a CRISPR-Cas9-based genetic screen of primary T cells we measured the multi-phenotypic impact of disrupting 25 T cell receptor-driven kinases. We identified p38 kinase as a central regulator of all four phenotypes and uncovered transcriptional and antioxidant pathways regulated by p38 in T cells. Pharmacological inhibition of p38 improved the efficacy of mouse anti-tumor T cells and enhanced the functionalities of human tumor-reactive and gene-engineered T cells, paving the way for clinically relevant interventions.


Assuntos
Neoplasias da Mama/terapia , Sistemas CRISPR-Cas , Imunoterapia Adotiva/métodos , Melanoma Experimental/terapia , Fenótipo , Linfócitos T/transplante , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Diferenciação Celular , Feminino , Engenharia Genética , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Nat Med ; 25(10): 1488-1499, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591590

RESUMO

Stimulating an immune response against cancer through adoptive transfer of tumor-targeting lymphocytes has shown great promise in hematological malignancies, but clinical efficacy against many common solid epithelial cancers remains low. Targeting 'neoantigens'-the somatic mutations expressed only by tumor cells-might enable tumor destruction without causing undue damage to vital healthy tissues. Major challenges to targeting neoantigens with T cells include heterogeneity and variability in antigen processing and presentation of targets by tumors, and an incomplete understanding of which T cell qualities are essential for clinically effective therapies. Finally, the prospect of targeting somatic tumor mutations to promote T cell destruction of cancer must contend with the biology that not all tumor-expressed 'neoepitopes' actually generate neoantigens that can be functionally recognized and provoke an effective immune response. In this Review, we discuss the promise, progress and challenges for improving neoantigen-targeted T cell-based immunotherapies for cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia , Neoplasias/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/uso terapêutico , Epitopos/genética , Epitopos/imunologia , Humanos , Mutação , Neoplasias/genética , Neoplasias/terapia
13.
J Exp Med ; 216(11): 2619-2634, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31405895

RESUMO

Host conditioning has emerged as an important component of effective adoptive cell transfer-based immunotherapy for cancer. High levels of IL-1ß are induced by host conditioning, but its impact on the antitumor function of T cells remains unclear. We found that the administration of IL-1ß increased the population size and functionality of adoptively transferred T cells within the tumor. Most importantly, IL-1ß enhanced the ability of tumor-specific T cells to trigger the regression of large, established B16 melanoma tumors in mice. Mechanistically, we showed that the increase in T cell numbers was associated with superior tissue homing and survival abilities and was largely mediated by IL-1ß-stimulated host cells. In addition, IL-1ß enhanced T cell functionality indirectly via its actions on radio-resistant host cells in an IL-2- and IL-15-dependent manner. Our findings not only underscore the potential of provoking inflammation to enhance antitumor immunity but also uncover novel host regulations of T cell responses.


Assuntos
Imunoterapia Adotiva/métodos , Interleucina-1beta/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/terapia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Interleucina-1beta/metabolismo , Interleucina-6/sangue , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/metabolismo , Linfócitos T/transplante , Fator de Necrose Tumoral alfa/sangue
14.
Cell ; 178(5): 1088-1101.e15, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442402

RESUMO

Mammals evolved in the face of fluctuating food availability. How the immune system adapts to transient nutritional stress remains poorly understood. Here, we show that memory T cells collapsed in secondary lymphoid organs in the context of dietary restriction (DR) but dramatically accumulated within the bone marrow (BM), where they adopted a state associated with energy conservation. This response was coordinated by glucocorticoids and associated with a profound remodeling of the BM compartment, which included an increase in T cell homing factors, erythropoiesis, and adipogenesis. Adipocytes, as well as CXCR4-CXCL12 and S1P-S1P1R interactions, contributed to enhanced T cell accumulation in BM during DR. Memory T cell homing to BM during DR was associated with enhanced protection against infections and tumors. Together, this work uncovers a fundamental host strategy to sustain and optimize immunological memory during nutritional challenges that involved a temporal and spatial reorganization of the memory pool within "safe haven" compartments.


Assuntos
Medula Óssea/metabolismo , Memória Imunológica , Animais , Medula Óssea/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Restrição Calórica/veterinária , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Dieta Redutora/veterinária , Metabolismo Energético , Regulação da Expressão Gênica , Glucocorticoides , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Taxa de Sobrevida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Science ; 363(6434)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923193

RESUMO

A paradox of tumor immunology is that tumor-infiltrating lymphocytes are dysfunctional in situ, yet are capable of stem cell-like behavior including self-renewal, expansion, and multipotency, resulting in the eradication of large metastatic tumors. We find that the overabundance of potassium in the tumor microenvironment underlies this dichotomy, triggering suppression of T cell effector function while preserving stemness. High levels of extracellular potassium constrain T cell effector programs by limiting nutrient uptake, thereby inducing autophagy and reduction of histone acetylation at effector and exhaustion loci, which in turn produces CD8+ T cells with improved in vivo persistence, multipotency, and tumor clearance. This mechanistic knowledge advances our understanding of T cell dysfunction and may lead to novel approaches that enable the development of enhanced T cell strategies for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Potássio/metabolismo , Células-Tronco/imunologia , Acetilcoenzima A/metabolismo , Acetilação , Animais , Autofagia/imunologia , Restrição Calórica , Diferenciação Celular/genética , Epigênese Genética , Histonas/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
16.
Mol Cell ; 73(6): 1162-1173.e5, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712990

RESUMO

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/biossíntese , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Células HEK293 , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno , Humanos , Vigilância Imunológica , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Melanoma/imunologia , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia
17.
J Clin Invest ; 129(4): 1551-1565, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30694219

RESUMO

Across clinical trials, T cell expansion and persistence following adoptive cell transfer (ACT) have correlated with superior patient outcomes. Herein, we undertook a pan-cancer analysis to identify actionable ligand-receptor pairs capable of compromising T cell durability following ACT. We discovered that FASLG, the gene encoding the apoptosis-inducing ligand FasL, is overexpressed within the majority of human tumor microenvironments (TMEs). Further, we uncovered that Fas, the receptor for FasL, is highly expressed on patient-derived T cells used for clinical ACT. We hypothesized that a cognate Fas-FasL interaction within the TME might limit both T cell persistence and antitumor efficacy. We discovered that genetic engineering of Fas variants impaired in the ability to bind FADD functioned as dominant negative receptors (DNRs), preventing FasL-induced apoptosis in Fas-competent T cells. T cells coengineered with a Fas DNR and either a T cell receptor or chimeric antigen receptor exhibited enhanced persistence following ACT, resulting in superior antitumor efficacy against established solid and hematologic cancers. Despite increased longevity, Fas DNR-engineered T cells did not undergo aberrant expansion or mediate autoimmunity. Thus, T cell-intrinsic disruption of Fas signaling through genetic engineering represents a potentially universal strategy to enhance ACT efficacy across a broad range of human malignancies.


Assuntos
Transferência Adotiva , Engenharia Genética , Neoplasias Experimentais/terapia , Receptores de Antígenos Quiméricos , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Animais , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genética , Receptor fas/genética , Receptor fas/imunologia
18.
Cell ; 175(7): 1780-1795.e19, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392958

RESUMO

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Glutaminase/imunologia , Ativação Linfocitária , Células Th1/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Glutaminase/genética , Masculino , Camundongos , Camundongos Transgênicos , Células Th1/citologia , Células Th17/citologia
19.
Nature ; 548(7669): 537-542, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28783722

RESUMO

Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR-Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.


Assuntos
Genes Essenciais/genética , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Feminino , Genoma/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon gama/imunologia , Janus Quinase 1/metabolismo , Bases de Conhecimento , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Mutação , Neoplasias/imunologia , Neoplasias/metabolismo , Reprodutibilidade dos Testes , Linfócitos T Citotóxicos/metabolismo
20.
Cell Metab ; 26(1): 94-109, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683298

RESUMO

Cancer immunotherapy is an increasingly successful strategy for the treatment of patients who have advanced or conventional therapy-resistant cancers. T cells are key mediators of tumor destruction and their specificity for tumor-expressed antigens is of paramount importance, but other T cell-intrinsic qualities, such as durability, longevity, and functionality also play important roles in determining the efficacy of immunotherapy. The cellular energetic pathways that are utilized by T cells play a key role in regulating each of these qualities. Metabolic activity, which both regulates and is regulated by cellular signaling pathways and epigenetics, also profoundly influences the trajectories of T cell differentiation and fate. In this Review, we discuss how cell metabolism influences T cell anti-tumor activity, the metabolic qualities of highly-functional T cells, and strategies to modulate metabolism for improving the immune response to tumors.


Assuntos
Imunoterapia/métodos , Redes e Vias Metabólicas , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Epigênese Genética , Humanos , Imunidade Celular , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA