Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(10): e0139537, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26489024

RESUMO

Protecting an endangered and highly poached species can conflict with providing an open and ecologically connected landscape for coexisting species. In Kenya, about half of the black rhino (Diceros bicornis) live in electrically fenced private conservancies. Purpose-built fence-gaps permit some landscape connectivity for elephant while restricting rhino from escaping. We monitored the usage patterns at these gaps by motion-triggered cameras and found high traffic volumes and predictable patterns of prey movement. The prey-trap hypothesis (PTH) proposes that predators exploit this predictable prey movement. We tested the PTH at two semi-porous reserves using two different methods: a spatial analysis and a temporal analysis. Using spatial analysis, we mapped the location of predation events with GPS and looked for concentration of kill sites near the gaps as well as conducting clustering and hot spot analysis to determine areas of statistically significant predation clustering. Using temporal analysis, we examined the time lapse between the passage of prey and predator and searched for evidence of active prey seeking and/or predator avoidance. We found no support for the PTH and conclude that the design of the fence-gaps is well suited to promoting connectivity in these types of conservancies.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Perissodáctilos/fisiologia , Comportamento Predatório/fisiologia , Animais , Elefantes/fisiologia , Equidae/fisiologia , Geografia , Humanos , Quênia , Leões/fisiologia , Modelos Teóricos , Panthera/fisiologia , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA