Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Viruses ; 16(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675880

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia.


Assuntos
COVID-19 , Modelos Animais de Doenças , Pulmão , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , COVID-19/virologia , Pulmão/virologia , Pulmão/patologia , Pulmão/diagnóstico por imagem , Humanos , Genes Reporter , Replicação Viral
2.
Commun Biol ; 7(1): 331, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491227

RESUMO

During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.


Assuntos
Bioensaio , Replicação do DNA , Animais , Cricetinae , Feminino , Humanos , Masculino , Animais Geneticamente Modificados , Mesocricetus , Mutação
3.
NPJ Vaccines ; 9(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167505

RESUMO

Here, we assessed the efficacy of a lipid nanoparticle-based mRNA vaccine candidate encoding the receptor-binding domain (LNP-mRNA-RBD) in mice. Mice immunized with LNP-mRNA-RBD based on the ancestral strain (ancestral-type LNP-mRNA-RBD) showed similar cellular responses against the ancestral strain and BA.5, but their neutralizing activity against BA.5 was lower than that against the ancestral strain. The ancestral-type LNP-mRNA-RBD protected mice from the ancestral strain or BA.5 challenge; however, its ability to reduce the viral burdens after BA.5 challenge was limited. In contrast, immunization with bivalent LNP-mRNA-RBD consisting of the ancestral-type and BA.4/5-type LNP-mRNA-RBD or monovalent BA.4/5-type LNP-mRNA-RBD elicited robust cellular responses, as well as high and moderate neutralizing titers against BA.5 and XBB.1.5, respectively. Furthermore, the vaccines containing BA.4/5-type LNP-mRNA-RBD remarkably reduced the viral burdens following BA.5 or XBB.1.5 challenge. Overall, our findings suggest that LNP-mRNA-RBD is effective against SARS-CoV-2 infection.

4.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294180

RESUMO

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Assuntos
Vacina BCG , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Tóquio , Mycobacterium bovis/genética , Ativação Linfocitária , Engenharia Genética , Vacinas Sintéticas
5.
Cell Rep ; 42(12): 113580, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38103202

RESUMO

EG.5.1 is a subvariant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB variant that is rapidly increasing in prevalence worldwide. However, the pathogenicity, transmissibility, and immune evasion properties of isolates of EG.5.1 are largely unknown. Here, we show that there are no obvious differences in growth ability and pathogenicity between EG.5.1 and XBB.1.5 in hamsters. We also demonstrate that, like XBB.1.5, EG.5.1 is transmitted more efficiently between hamsters compared to its predecessor, BA.2. In contrast, unlike XBB.1.5, we detect EG.5.1 in the lungs of four of six exposed hamsters, suggesting that the virus properties of EG.5.1 are different from those of XBB.1.5. Finally, we find that the neutralizing activity of plasma from convalescent individuals against EG.5.1 was slightly, but significantly, lower than that against XBB.1.5 or XBB.1.9.2. Our data suggest that the different virus properties after transmission and the altered antigenicity of EG.5.1 may be driving its increasing prevalence over XBB.1.5 in humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Evasão da Resposta Imune , Morfogênese , Anticorpos Neutralizantes
6.
iScience ; 26(11): 108147, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876803

RESUMO

The emergence and spread of new SARS-CoV-2 variants with mutations in the spike protein, such as the XBB.1.5 and XBB.1.9.1 sublineages, raise concerns about the efficacy of current COVID-19 vaccines and therapeutic monoclonal antibodies (mAbs). In this study, none of the mAbs we tested neutralized XBB.1.9.1 or XBB.1.5, even at the highest concentration used. We also found that the bivalent mRNA vaccine could enhance humoral immunity against XBB.1.9.1, but that XBB.1.9.1 and XBB.1.5 still evaded humoral immunity induced by vaccination or infection. Moreover, the susceptibility of XBB.1.9.1 to remdesivir, molnupiravir, nirmatrelvir, and ensitrelvir was similar to that of the ancestral strain and the XBB.1.5 isolate in vitro. Finally, we found the replicative fitness of XBB.1.9.1 to be similar to that of XBB.1.5 in hamsters. Our results suggest that XBB.1.9.1 and XBB.1.5 have similar antigenicity and replicative ability, and that the currently available COVID-19 antivirals remain effective against XBB.1.9.1.

7.
Nat Commun ; 14(1): 4231, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454219

RESUMO

Ensitrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro or Nsp5), is clinically useful against SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to most monoclonal antibody therapies, SARS-CoV-2 resistance to other antivirals including main protease inhibitors such as ensitrelvir is a major public health concern. Here, repeating passages of SARS-CoV-2 in the presence of ensitrelvir revealed that the M49L and E166A substitutions in Nsp5 are responsible for reduced sensitivity to ensitrelvir. Both substitutions reduced in vitro virus growth in the absence of ensitrelvir. The combination of the M49L and E166A substitutions allowed the virus to largely evade the suppressive effect of ensitrelvir in vitro. The virus possessing Nsp5-M49L showed similar pathogenicity to wild-type virus, whereas the virus possessing Nsp5-E166A or Nsp5-M49L/E166A slightly attenuated. Ensitrelvir treatment of hamsters infected with the virus possessing Nsp5-M49L/E166A was ineffective; however, nirmatrelvir or molnupiravir treatment was effective. Therefore, it is important to closely monitor the emergence of ensitrelvir-resistant SARS-CoV-2 variants to guide antiviral treatment selection.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico
8.
Nat Commun ; 14(1): 3952, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402789

RESUMO

Nirmatrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro), is clinically useful against infection with SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to many monoclonal antibody therapies, potential SARS-CoV-2 resistance to nirmatrelvir is a major public health concern. Several amino acid substitutions have been identified as being responsible for reduced susceptibility to nirmatrelvir. Among them, we selected L50F/E166V and L50F/E166A/L167F in the 3CLpro because these combinations of substitutions are unlikely to affect virus fitness. We prepared and characterized delta variants possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F. Both mutant viruses showed decreased susceptibility to nirmatrelvir and their growth in VeroE6/TMPRSS2 cells was delayed. Both mutant viruses showed attenuated phenotypes in a male hamster infection model, maintained airborne transmissibility, and were outcompeted by wild-type virus in co-infection experiments in the absence of nirmatrelvir, but less so in the presence of the drug. These results suggest that viruses possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F do not become dominant in nature. However, it is important to closely monitor the emergence of nirmatrelvir-resistant SARS-CoV-2 variants because resistant viruses with additional compensatory mutations could emerge, outcompete the wild-type virus, and become dominant.


Assuntos
COVID-19 , Masculino , Animais , Cricetinae , SARS-CoV-2/genética , Substituição de Aminoácidos , Antivirais/farmacologia , Lactamas , Leucina , Nitrilas
9.
J Antimicrob Chemother ; 78(7): 1649-1657, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37209424

RESUMO

OBJECTIVES: Widespread resistance of influenza viruses to neuraminidase (NA) inhibitor or polymerase inhibitor, baloxavir, is a major public health concern. The amino acid mutations R152K in NA and I38T in polymerase acidic (PA) are responsible for resistance to NA inhibitors and baloxavir, respectively. METHODS: We generated recombinant A(H1N1)pdm09 viruses possessing NA-R152K, PA-I38T or both mutations by using a plasmid-based reverse genetics system, characterized their virological properties in vitro and in vivo, and examined whether oseltamivir, baloxavir and favipiravir are effective against these mutant viruses. RESULTS: The three mutant viruses showed similar or superior growth kinetics and virulence to those of wild-type virus. Although oseltamivir and baloxavir blocked the replication of the wild-type virus in vitro, oseltamivir and baloxavir failed to suppress the replication of the NA-R152K and PA-I38T viruses in vitro, respectively. Mutant virus possessing both mutations grew in the presence of oseltamivir or baloxavir in vitro. Baloxavir treatment protected mice from lethal infection with wild-type or NA-R152K virus, but failed to protect mice from lethal infection with PA-I38T or PA-I38T/NA-R152K virus. Favipiravir treatment protected mice from lethal infection with all viruses tested, whereas oseltamivir treatment did not protect at all. CONCLUSIONS: Our findings indicate that favipiravir should be used to treat patients with suspected baloxavir-resistant virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Camundongos , Humanos , Oseltamivir/farmacologia , Neuraminidase/genética , Vírus da Influenza A Subtipo H1N1/genética , Antivirais/farmacologia , Piridonas/farmacologia , Inibidores Enzimáticos/farmacologia , Triazinas/farmacologia , Guanidinas/farmacologia , Influenza Humana/tratamento farmacológico , Farmacorresistência Viral/genética
11.
EBioMedicine ; 91: 104561, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043872

RESUMO

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS: We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS: S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION: Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Virulência/genética , Fusão de Membrana
12.
Nat Commun ; 14(1): 1620, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959194

RESUMO

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2 , Bioensaio , Replicação do DNA , Índia , Mesocricetus
14.
Sci Rep ; 13(1): 3103, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813909

RESUMO

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global pandemic. Although several vaccines targeting SARS-CoV-2 spike proteins protect against COVID-19 infection, mutations affecting virus transmissibility and immune evasion potential have reduced their efficacy, leading to the need for a more efficient strategy. Available clinical evidence regarding COVID-19 suggests that endothelial dysfunction with thrombosis is a central pathogenesis of progression to systemic disease, in which overexpression of plasminogen activator inhibitor-1 (PAI-1) may be important. Here we developed a novel peptide vaccine against PAI-1 and evaluated its effect on lipopolysaccharide (LPS)-induced sepsis and SARS-CoV-2 infection in mice. Administration of LPS and mouse-adapted SARS-CoV-2 increased serum PAI-1 levels, although the latter showed smaller levels. In an LPS-induced sepsis model, mice immunized with PAI-1 vaccine showed reduced organ damage and microvascular thrombosis and improved survival compared with vehicle-treated mice. In plasma clot lysis assays, vaccination-induced serum IgG antibodies were fibrinolytic. However, in a SARS-CoV-2 infection model, survival and symptom severity (i.e., body weight reduction) did not differ between vaccine- and vehicle-treated groups. These results indicate that although PAI-1 may promote the severity of sepsis by increasing thrombus formation, it might not be a major contributor to COVID-19 exacerbation.


Assuntos
COVID-19 , Inibidor 1 de Ativador de Plasminogênio , Sepse , Animais , Camundongos , Anticorpos Antivirais , Modelos Animais de Doenças , Lipopolissacarídeos , SARS-CoV-2
16.
Nat Commun ; 14(1): 1076, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841831

RESUMO

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Benzotiazóis , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Proteases 3C de Coronavírus/antagonistas & inibidores
19.
Nat Commun ; 13(1): 6602, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329075

RESUMO

Improved vaccines and antiviral agents that provide better, broader protection against seasonal and emerging influenza viruses are needed. The viral surface glycoprotein hemagglutinin (HA) is a primary target for the development of universal influenza vaccines and therapeutic antibodies. The other major surface antigen, neuraminidase (NA), has been less well studied as a potential target and fewer broadly reactive anti-NA antibodies have been identified. In this study, we isolate three human monoclonal antibodies that recognize NA from A/H1N1 subtypes, and find that one of them, clone DA03E17, binds to the NA of A/H3N2, A/H5N1, A/H7N9, B/Ancestral-lineage, B/Yamagata-lineage, and B/Victoria-lineage viruses. DA03E17 inhibits the neuraminidase activity by direct binding to the enzyme active site, and provides in vitro and in vivo protection against infection with several types of influenza virus. This clone could, therefore, be useful as a broadly protective therapeutic agent. Moreover, the neutralizing epitope of DA03E17 could be useful in the development of an NA-based universal influenza vaccine.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA