Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36294919

RESUMO

Understanding how plants respond and adapt to extraterrestrial conditions is essential for space exploration initiatives. Deleterious effects of the space environment on plant development have been reported, such as the unbalance of cell growth and proliferation in the root meristem, or gene expression reprogramming. However, plants are capable of surviving and completing the seed-to-seed life cycle under microgravity. A key research challenge is to identify environmental cues, such as light, which could compensate the negative effects of microgravity. Understanding the crosstalk between light and gravity sensing in space was the major objective of the NASA-ESA Seedling Growth series of spaceflight experiments (2013-2018). Different g-levels were used, with special attention to micro-g, Mars-g, and Earth-g. In spaceflight seedlings illuminated for 4 days with a white light photoperiod and then photostimulated with red light for 2 days, transcriptomic studies showed, first, that red light partially reverted the gene reprogramming induced by microgravity, and that the combination of microgravity and photoactivation was not recognized by seedlings as stressful. Two mutant lines of the nucleolar protein nucleolin exhibited differential requirements in response to red light photoactivation. This observation opens the way to directed-mutagenesis strategies in crop design to be used in space colonization. Further transcriptomic studies at different g-levels showed elevated plastid and mitochondrial genome expression in microgravity, associated with disturbed nucleus-organelle communication, and the upregulation of genes encoding auxin and cytokinin hormonal pathways. At the Mars g-level, genes of hormone pathways related to stress response were activated, together with some transcription factors specifically related to acclimation, suggesting that seedlings grown in partial-g are able to acclimate by modulating genome expression in routes related to space-environment-associated stress.

2.
Plant Physiol Biochem ; 171: 191-200, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007950

RESUMO

We performed a series of experiments to study the interaction between phototropism and gravitropism in Arabidopsis thaliana as part of the Seedling Growth Project on the International Space Station. Red-light-based and blue-light-based phototropism were examined in microgravity and at 1g, a control that was produced by an on-board centrifuge. At the end of the experiments, seedlings were frozen and brought back to Earth for gene profiling studies via RNASeq methods. In this paper, we focus on five genes identified in these space studies by their differential expression in space: one involved in auxin transport and four others encoding genes for: a methyltransferase subunit, a transmembrane protein, a transcription factor for endodermis formation, and a cytoskeletal element (an intermediate filament protein). Time course studies using mutant strains of these five genes were performed for blue-light and red-light phototropism studies as well as for gravitropism assays on ground. Interestingly, all five of the genes had some effects on all the tropisms under the conditions studied. In addition, RT-PCR analyses examined expression of the five genes in wild-type seedlings during blue-light-based phototropism. Previous studies have supported a role of both microfilaments and microtubules in tropism pathways. However, the most interesting finding of the present space studies is that NFL, a gene encoding an intermediate filament protein, plays a role in phototropism and gravitropism, which opens the possibility that this cytoskeletal element modulates signal transduction in plants.


Assuntos
Voo Espacial , Ausência de Peso , Gravitropismo/genética , Filamentos Intermediários , Luz , Fototropismo
3.
Life Sci Space Res (Amst) ; 32: 8-16, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065766

RESUMO

Long-duration space missions will need to rely on the use of plants in bio-regenerative life support systems (BLSSs) because these systems can produce fresh food and oxygen, reduce carbon dioxide levels, recycle metabolic waste, and purify water. In this scenario, the need for new experiments on the effects of altered gravity conditions on plant biological processes is increasing, and significant efforts should be devoted to new ideas aimed at increasing the scientific output and lowering the experimental costs. Here, we report the design of an easy-to-produce and inexpensive device conceived to analyze the effect of interaction between gravity and light on root tropisms. Each unit consisted of a polystyrene multi-slot rack with light-emitting diodes (LEDs), capable of holding Petri dishes and assembled with a particular filter-paper folding. The device was successfully used for the ROOTROPS (for root tropisms) experiment performed in the Large Diameter Centrifuge (LDC) and Random Positioning Machine (RPM) at ESA's European Space Research and Technology centre (ESTEC). During the experiments, four light treatments and six gravity conditions were factorially combined to study their effects on root orientation of Brassica oleracea seedlings. Light treatments (red, blue, and white) and a dark condition were tested under four hypergravity levels (20 g, 15 g, 10 g, 5 g), a 1 g control, and a simulated microgravity (RPM) condition. Results of validation tests showed that after 24 h, the assembled system remained unaltered, no slipping or displacement of seedlings occurred at any hypergravity treatment or on the RPM, and seedlings exhibited robust growth. Overall, the device was effective and reliable in achieving scientific goals, suggesting that it can be used for ground-based research on phototropism-gravitropism interactions. Moreover, the concepts developed can be further expanded for use in future spaceflight experiments with plants.


Assuntos
Voo Espacial , Ausência de Peso , Gravitropismo , Fototropismo , Plântula , Tropismo
4.
Methods Mol Biol ; 2368: 165-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647256

RESUMO

The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, this chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. One of the authors (JZK) has been a principal investigator on eight spaceflight projects. These experiences include using the U.S. Space Shuttle, the former Russian Space Station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to fly an experiment into space and to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turn around of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants. We also will consider new opportunities for Moon-based research via NASA's Artemis lunar exploration program.


Assuntos
Lua , Plantas , Voo Espacial , Agências Internacionais
5.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477454

RESUMO

The response of plants to the spaceflight environment and microgravity is still not well understood, although research has increased in this area. Even less is known about plants' response to partial or reduced gravity levels. In the absence of the directional cues provided by the gravity vector, the plant is especially perceptive to other cues such as light. Here, we investigate the response of Arabidopsis thaliana 6-day-old seedlings to microgravity and the Mars partial gravity level during spaceflight, as well as the effects of red-light photostimulation by determining meristematic cell growth and proliferation. These experiments involve microscopic techniques together with transcriptomic studies. We demonstrate that microgravity and partial gravity trigger differential responses. The microgravity environment activates hormonal routes responsible for proliferation/growth and upregulates plastid/mitochondrial-encoded transcripts, even in the dark. In contrast, the Mars gravity level inhibits these routes and activates responses to stress factors to restore cell growth parameters only when red photostimulation is provided. This response is accompanied by upregulation of numerous transcription factors such as the environmental acclimation-related WRKY-domain family. In the long term, these discoveries can be applied in the design of bioregenerative life support systems and space farming.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Gravitação , Plântula/genética , Voo Espacial , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Hipogravidade , Luz , Marte , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Ausência de Peso/efeitos adversos
6.
iScience ; 23(11): 101686, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33163940

RESUMO

Understanding plant adaptive responses to the space environment is a requisite for enabling space farming. Spaceflight produces deleterious effects on plant cells, particularly affecting ribosome biogenesis, a complex stress-sensitive process coordinated with cell division and differentiation, known to be activated by red light. Here, in a series of ground studies, we have used mutants from the two Arabidopsis nucleolin genes (NUC1 and NUC2, nucleolar regulators of ribosome biogenesis) to better understand their role in adaptive response mechanisms to stress on Earth. Thus, we show that nucleolin stress-related gene NUC2 can compensate for the environmental stress provided by darkness in nuc1 plants, whereas nuc2 plants are not able to provide a complete response to red light. These ground control findings, as part of the ESA/NASA Seedling Growth spaceflight experiments, will determine the basis for the identification of genetic backgrounds enabling an adaptive advantage for plants in future space experiments.

7.
Front Plant Sci ; 10: 1529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850027

RESUMO

Introduction: Traveling to nearby extraterrestrial objects having a reduced gravity level (partial gravity) compared to Earth's gravity is becoming a realistic objective for space agencies. The use of plants as part of life support systems will require a better understanding of the interactions among plant growth responses including tropisms, under partial gravity conditions. Materials and Methods: Here, we present results from our latest space experiments on the ISS, in which seeds of Arabidopsis thaliana were germinated, and seedlings grew for six days under different gravity levels, namely micro-g, several intermediate partial-g levels, and 1g, and were subjected to irradiation with blue light for the last 48 h. RNA was extracted from 20 samples for subsequent RNAseq analysis. Transcriptomic analysis was performed using the HISAT2-Stringtie-DESeq pipeline. Differentially expressed genes were further characterized for global responses using the GEDI tool, gene networks and for Gene Ontology (GO) enrichment. Results: Differential gene expression analysis revealed only one differentially expressed gene (AT4G21560, VPS28-1 a vacuolar protein) across all gravity conditions using FDR correction (q < 0.05). However, the same 14 genes appeared differentially expressed when comparing either micro-g, low-g level (< 0.1g) or the Moon g-level with 1g control conditions. Apart from these 14-shared genes, the number of differentially expressed genes was similar in microgravity and the Moon g-level and increased in the intermediate g-level (< 0.1g), but it was then progressively reduced as the difference with the Earth gravity became smaller. The GO groups were differentially affected at each g-level: light and photosynthesis GO under microgravity, genes belonged to general stress, chemical and hormone responses under low-g, and a response related to cell wall and membrane structure and function under the Moon g-level. Discussion: Transcriptional analyses of plants under blue light stimulation suggests that root blue-light phototropism may be enough to reduce the gravitational stress response caused by the lack of gravitropism in microgravity. Competition among tropisms induces an intense perturbation at the micro-g level, which shows an extensive stress response that is progressively attenuated. Our results show a major effect on cell wall/membrane remodeling (detected at the interval from the Moon to Mars gravity), which can be potentially related to graviresistance mechanisms.

8.
Front Plant Sci ; 10: 1577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867033

RESUMO

Life on Earth has evolved under the influence of gravity. This force has played an important role in shaping development and morphology from the molecular level to the whole organism. Although aquatic life experiences reduced gravity effects, land plants have evolved under a 1-g environment. Understanding gravitational effects requires changing the magnitude of this force. One method of eliminating gravity''s influence is to enter into a free-fall orbit around the planet, thereby achieving a balance between centripetal force of gravity and the centrifugal force of the moving object. This balance is often mistakenly referred to as microgravity, but is best described as weightlessness. In addition to actually compensating gravity, instruments such as clinostats, random-positioning machines (RPM), and magnetic levitation devices have been used to eliminate effects of constant gravity on plant growth and development. However, these platforms do not reduce gravity but constantly change its direction. Despite these fundamental differences, there are few studies that have investigated the comparability between these platforms and weightlessness. Here, we provide a review of the strengths and weaknesses of these analogs for the study of plant growth and development compared to spaceflight experiments. We also consider reduced or partial gravity effects via spaceflight and analog methods. While these analogs are useful, the fidelity of the results relative to spaceflight depends on biological parameters and environmental conditions that cannot be simulated in ground-based studies.

9.
Am J Bot ; 106(11): 1466-1476, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31709515

RESUMO

PREMISE: Plants synthesize information from multiple environmental stimuli when determining their direction of growth. Gravity, being ubiquitous on Earth, plays a major role in determining the direction of growth and overall architecture of the plant. Here, we utilized the microgravity environment on board the International Space Station (ISS) to identify genes involved influencing growth and development of phototropically stimulated seedlings of Arabidopsis thaliana. METHODS: Seedlings were grown on the ISS, and RNA was extracted from 7 samples (pools of 10-15 plants) grown in microgravity (µg) or Earth gravity conditions (1-g). Transcriptomic analyses via RNA sequencing (RNA-seq) of differential gene expression was performed using the HISAT2-Stringtie-DESeq2 RNASeq pipeline. Differentially expressed genes were further characterized by using Pathway Analysis and enrichment for Gene Ontology classifications. RESULTS: For 296 genes that were found significantly differentially expressed between plants in microgravity compared to 1-g controls, Pathway Analysis identified eight molecular pathways that were significantly affected by reduced gravity conditions. Specifically, light-associated pathways (e.g., photosynthesis-antenna proteins, photosynthesis, porphyrin, and chlorophyll metabolism) were significantly downregulated in microgravity. CONCLUSIONS: Gene expression in A. thaliana seedlings grown in microgravity was significantly altered compared to that of the 1-g control. Understanding how plants grow in conditions of microgravity not only aids in our understanding of how plants grow and respond to the environment but will also help to efficiently grow plants during long-range space missions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Voo Espacial , Ausência de Peso , Plântula
10.
Semin Cell Dev Biol ; 92: 122-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30935972

RESUMO

Tropisms are directed growth-mediated plant movements which allow plants to respond to their environment. Gravitropism is the ability of plants to perceive and respond to the gravity vector and orient themselves accordingly. The gravitropic pathway can be divided into three main components: perception, biochemical signaling, and differential growth. Perception of the gravity signal occurs through the movement/sedimentation of starch-filled plastids (termed statoliths) in gravity sensing cells. Once perceived, proteins interact with the settling statoliths to set a cascade of plant hormones to the elongation zones in the roots or shoots. Plant growth regulators that play a role in gravitropism include auxin, ethylene, gibberellic acid, jasmonic acid, among others. Differential growth on opposing sides of the root or shoot allow for the plant to grow relative to the direction of the perceived gravity vector. In this review, we detail how plants perceive gravity and respond biochemically in response to gravity as well as synthesize the recent literature on this important topic in plant biology. Keywords: auxin, gravitropism, gravity perception, plant growth regulators, space biology, statolith.


Assuntos
Gravitropismo/genética , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Plantas
11.
Methods Mol Biol ; 1924: 207-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694478

RESUMO

Utilization of orbiting spacecraft allows for studying biological processes in conditions of microgravity. Centrifuges on board these platforms also allow for the creation of partial gravity vectors (to simulate the Moon or Mars levels of gravity) as well as onboard 1-g controls for the space experiments. Thus, the mechanisms of gravity and light perception in plants can be analyzed in a unique environment which can give insights into fundamental processes in biology. Here, we describe the methods for preparation of a plant biology experiment with seedlings of Arabidopsis thaliana utilizing the European Modular Cultivation System (EMCS) on the International Space Station (ISS). The procedures outlined in this paper have been successfully used in several of our recent spaceflight experiments, which have given unique insights into the basic mechanisms of tropisms.


Assuntos
Arabidopsis/fisiologia , Fototropismo/fisiologia , Plântula/fisiologia , Voo Espacial , Gravitropismo/fisiologia , Ausência de Peso
12.
Planta ; 248(3): 691-704, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948124

RESUMO

MAIN CONCLUSION: Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.


Assuntos
Meristema/citologia , Raízes de Plantas/citologia , Ausência de Peso , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Perfilação da Expressão Gênica , Gravitropismo , Luz , Meristema/crescimento & desenvolvimento , Meristema/efeitos da radiação , Microscopia , Fototropismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Simulação de Ausência de Peso
13.
Am J Bot ; 104(8): 1219-1231, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28827451

RESUMO

PREMISE OF THE STUDY: Plants will play an important role in the future of space exploration as part of bioregenerative life support. Thus, it is important to understand the effects of microgravity and spaceflight on gene expression in plant development. METHODS: We analyzed the transcriptome of Arabidopsis thaliana using the Biological Research in Canisters (BRIC) hardware during Space Shuttle mission STS-131. The bioinformatics methods used included RMA (robust multi-array average), MAS5 (Microarray Suite 5.0), and PLIER (probe logarithmic intensity error estimation). Glycome profiling was used to analyze cell wall composition in the samples. In addition, our results were compared to those of two other groups using the same hardware on the same mission (BRIC-16). KEY RESULTS: In our BRIC-16 experiments, we noted expression changes in genes involved in hypoxia and heat shock responses, DNA repair, and cell wall structure between spaceflight samples compared to the ground controls. In addition, glycome profiling supported our expression analyses in that there was a difference in cell wall components between ground control and spaceflight-grown plants. Comparing our studies to those of the other BRIC-16 experiments demonstrated that, even with the same hardware and similar biological materials, differences in results in gene expression were found among these spaceflight experiments. CONCLUSIONS: A common theme from our BRIC-16 space experiments and those of the other two groups was the downregulation of water stress response genes in spaceflight. In addition, all three studies found differential regulation of genes associated with cell wall remodeling and stress responses between spaceflight-grown and ground control plants.

14.
Plant Physiol ; 174(2): 470-472, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584064
15.
Planta ; 244(6): 1201-1215, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27507239

RESUMO

MAIN CONCLUSION: Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.


Assuntos
Arabidopsis/fisiologia , Fototropismo/fisiologia , Raízes de Plantas/fisiologia , Arabidopsis/efeitos da radiação , Luz , Fototropismo/efeitos da radiação , Raízes de Plantas/efeitos da radiação , Ausência de Peso
16.
Plant Sci ; 243: 115-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26795156

RESUMO

Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space.


Assuntos
Fenômenos Fisiológicos Vegetais , Ausência de Peso , Plantas/genética , Voo Espacial
17.
J Plant Res ; 128(6): 1007-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376793

RESUMO

Gravity is a constant unidirectional stimulus on Earth, and gravitropism in plants involves three phases: perception, transduction, and response. In shoots, perception takes place within the endodermis. To investigate the cellular machinery of perception in microgravity, we conducted a spaceflight study with Arabidopsis thaliana seedlings, which were grown in microgravity in darkness using the Biological Research in Canisters (BRIC) hardware during space shuttle mission STS-131. In the 14-day-old etiolated plants, we studied seedling development and the morphological parameters of the endodermal cells in the petiole. Seedlings from the spaceflight experiment (FL) were compared to a ground control (GC), which both were in the BRIC flight hardware. In addition, to assay any potential effects from growth in spaceflight hardware, we performed another control by growing seedlings in Petri dishes in standard laboratory conditions (termed the hardware control, HC). Seed germination was significantly lower in samples grown in flight hardware (FL, GC) compared to the HC. In terms of cellular parameters of endodermal cells, the greatest differences also were between seedlings grown in spaceflight hardware (FL, GC) compared to those grown outside of this hardware (HC). Specifically, the endodermal cells were significantly smaller in seedlings grown in the BRIC system compared to those in the HC. However, a change in the shape of the cell, suggesting alterations in the cell wall, was one parameter that appears to be a true microgravity effect. Taken together, our results suggest that caution must be taken when interpreting results from the increasingly utilized BRIC spaceflight hardware system and that it is important to perform additional ground controls to aid in the analysis of spaceflight experiments.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Voo Espacial , Ausência de Peso , Gravitropismo , Voo Espacial/instrumentação
18.
Methods Mol Biol ; 1309: 255-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981781

RESUMO

The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, the present chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. The author has been a principal investigator on six spaceflight projects and has another two space experiments in development. These experiences include using the US Space Shuttle, the former Russian space station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turnaround of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, and data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Finally, lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants.


Assuntos
Desenvolvimento Vegetal/genética , Voo Espacial , Gravitação , Humanos , Agências Internacionais , Plantas/genética
19.
Front Plant Sci ; 5: 563, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389428

RESUMO

Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.

20.
Planta ; 238(3): 519-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23771594

RESUMO

The transcriptome of seedlings was analyzed from experiments performed on the International Space Station to study the interacting effects of light and gravity on plant tropisms (project named TROPI-2; Kiss et al. 2012). Seeds of Arabidopsis were germinated in space, and seedlings were then grown in the European Modular Cultivation System for 4 days at ~1g followed by exposure to a range of gravitational accelerations (from microgravity to 1g) and two light treatments (blue light with or without a 1 h pretreatment with red). At the end of the experiments, the cassettes containing the seedlings were frozen in the minus eighty laboratory freezer and returned to Earth on space shuttle mission STS-131. The RNA was extracted from whole seedlings and used for the transcriptome analyses. A comparison of 1g spaceflight samples with 1g ground controls identified 230 genes that were differentially regulated at least twofold, emphasizing the need for "in situ" tissue fixation on a 1g centrifuge as an important control for spaceflight experiments. A further comparison of all spaceflight samples with ground controls identified approximately 280 genes that were differentially regulated at least twofold. Of these genes, several were involved in regulating cell polarity (i.e., auxin, calcium, lipid metabolism), cell-wall development, oxygen status, and cell defense or stress. However, when the transcriptome of the all g-treated spaceflight samples was compared with microgravity samples, only ~130 genes were identified as being differently regulated (P ≤ 0.01). Of this subset, only 27 genes were at least twofold differently regulated between microgravity and 1g space samples and included putative/pseudo/undefined genes (14), transposable elements (5), an expansin (ATEXP24; At1g21240), a cell-wall kinase (WAK3; At1g21240), a laccase-like flavonoid oxidase (TT10; At5g48100), among others.


Assuntos
Arabidopsis/genética , Plântula/genética , Voo Espacial , Perfilação da Expressão Gênica , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA