Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMC Pediatr ; 24(1): 26, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191376

RESUMO

BACKGROUND: Bisphenol A diglycidyl ether (BADGE) and Bisphenol F diglycidyl ether (BFDGE) are used in medical devices, such as intravenous sets, syringes, and catheters. Several studies have reported that these compounds are endocrine disruptors, cytotoxic, and genotoxic, raising concerns about their adverse effects on infants, in a stage of remarkable growth and development. The present study aimed to measure the serum concentrations of BADGE, derivatives of BADGE, and BFDGE in infants and examine the factors that influence them. METHODS: Ten infants admitted to the neonatal intensive care unit (NICU) were enrolled in the present study. Blood samples from each infant and questionnaires from their mothers were collected twice, at 1-2 months and 7 months of age. BADGE, BADGE·H2O, BADGE·2H2O, and BFDGE were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Serum BADGE·2H2O was identified in all infants, at both 1-2 months (2.30-157.58 ng/ml) and 7 months of age (0.86-122.85 ng/ml). One of the two infants who received invasive ventilation showed a substantially increased BADGE·2H2O concentration. There was no significant difference in BADGE·2H2O concentrations at 7 months of age between the group that ate commercial baby food at least ≥ 1 time per week and the group that did not. CONCLUSIONS: BADGE·2H2O was detected in the serum of all infants with a history of NICU hospitalization. Future studies are needed to determine the source of BADGE exposure and investigate its effects on infant development.


Assuntos
Unidades de Terapia Intensiva Neonatal , Espectrometria de Massas em Tandem , Humanos , Lactente , Cromatografia Líquida , Hospitalização , Japão
2.
J Occup Health ; 65(1): e12427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845837

RESUMO

OBJECTIVE: We aim to investigate the quantity and quality of scientific evidence dealing with comprehensive health issues of working women in occupational health. METHODS: This scoping review of original articles that investigated comprehensive health issues of working women aged 19-64 years in Japan was published in PubMed (1967-2022) and Igaku Chuo Zasshi (or Ichu-shi, 1982-2022). Using identical broad search terms, we first identified 17 122 English and 6154 Japanese articles. We excluded those with clinically relevant topics, or ethnicity other than Japanese and included 853 English and 855 Japanese articles for review and classified them into nine research areas considered to be critical factors for women in the workforce and five study design groups to investigate the quality of the evidence accumulated. RESULTS: Among 853 English-language articles in PubMed, "Mental health" was the most frequent area studied, followed by "Work-related disease" and "Lifestyle-related disease." Among 855 Japanese-language articles from Ichu-shi, "Mental health" was the most frequently studied area followed by "Work and balance," and "Work-related disease." "Infertility, pregnancy, and childbirth" and "Menstruation, menopause, and genital disease" were well studied in Ichu-shi but scarcely published in PubMed. "Harassment and discrimination" were sparsely reported in both databases. As for research designs, many articles in both PubMed and Ichu-shi employed descriptive or cross-sectional study designs. However, a few studies employed cohort/longitudinal or interventional studies. CONCLUSION: The results underscored the need for higher-quality study designs with more scientific evidence on working women's health in the field of occupational health.


Assuntos
Saúde Ocupacional , Mulheres Trabalhadoras , Humanos , Feminino , Japão , Estudos Transversais , Saúde Mental
3.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119484, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201767

RESUMO

Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.


Assuntos
Replicação do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fosforilação , Ciclo Celular , Pontos de Checagem do Ciclo Celular
4.
J Occup Health ; 65(1): e12393, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36823734

RESUMO

OBJECTIVES: There are some studies reporting the association between (manganese [Mn]) exposure to welding fume and neurological dysfunction. This study examined the relationship between Mn exposure and neurological behavior in Japanese male welders and non-welders using biological samples, which to date has not been assessed in Japan. METHODS: A total of 94 male welders and 95 male non-welders who worked in the same factories were recruited. The blood and urine samples were obtained from all the participants to measure Mn exposure levels. Neurological function tests were also conducted with all participants. The sampling of the breathing air zone using a personal sampler was measured for welders only. RESULTS: The odds ratios (ORs) for the Working Memory Index (WMI) scores were significantly higher among all participants in the low blood Mn concentration group than those in the high blood Mn concentration group (OR, 2.77; 95% confidence interval [CI], 1.24, 6.19; P = .013). The association of WMI scores and blood Mn levels in welders had the highest OR (OR, 3.73; 95% CI, 1.04, 13.38; P = .043). Although not statistically significant, a mild relationship between WMI scores and blood Mn levels was observed in non-welders (OR, 2.09; 95% CI, 0.63, 6.94; P = .227). CONCLUSIONS: The results revealed a significant positive relationship between blood Mn and neurological dysfunction in welders. Furthermore, non-welders at the same factories may be secondarily exposed to welding fumes. Further research is needed to clarify this possibility.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Masculino , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise , População do Leste Asiático , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Manganês/toxicidade
5.
Genes Cells ; 28(1): 42-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36453187

RESUMO

Bisphenol F diglycidyl ether (BFDGE) is widely used in the synthesis process of plastic products. While exposure to bisphenol A diglycidyl ether (BADGE), which has a similar structure to BFDGE and which is used for the same purpose, has been reported to cause health risks, there is still little information on BFDGE. Because it is estimated that the industrial workers are exposed to large amounts of BFDGE, the health risks associated with BFDGE exposure need to be clarified. We investigated the toxicity of cutaneous exposure to BFDGE using an in vitro evaluation system and a mouse exposure model. The tumorigenic potential of BFDGE was confirmed by the Bhas 42 cell transformation assay, which showed that BFDGE has both promoter and initiator activity, in vitro. A single dermal application of BFDGE was associated with minor contact hypersensitivity symptoms. In contrast, repeated dermal exposure to BFDGE for 2 weeks induced persistent acute inflammation with features similar to inflammation in human psoriasis. This is the first report evaluating the toxicity of BFDGE in animals, and we showed that BFDGE carries a health risk of inducing skin dermatitis similar to that in human psoriasis in an exposure period-dependent manner.


Assuntos
Dermatite , Psoríase , Humanos , Animais , Camundongos , Compostos de Epóxi/toxicidade , Dermatite/etiologia , Inflamação/induzido quimicamente , Psoríase/induzido quimicamente
6.
Vaccines (Basel) ; 10(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891198

RESUMO

Uncovering the predictors of vaccine immunogenicity is essential for infection control. We have reported that the most prevalent polymorphism of the aldehyde dehydrogenase 2 gene (ALDH2), rs671, may be associated with an attenuated immune system. To test the inverse relationship between rs671 and antibody production after COVID-19 vaccination, the levels of anti-SARS-CoV-2 Spike protein S1 subunit (S1) IgG were repeatedly measured for four months before and after vaccination with BNT162b2 or mRNA-1273, in 88 Japanese workers and students (including 45 females, aged 21-56 years, with an rs671 variant allele frequency of 0.3). The mixed model including fixed effects of the vaccine type, weeks post vaccination (categorical variable), sex, age, height, smoking status, ethanol intake, exercise habit, perceived stress, steroid use, allergic diseases, and dyslipidemia, indicated an inverse association between log-transformed anti-S1 IgG levels and the number of rs671 variant alleles (partial regression coefficient = -0.15, p = 0.002). Our study indicated for the first time that the variant allele of ALDH2, rs671, is associated with the attenuated immunogenicity of COVID-19 mRNA vaccines. Our finding may provide a basis for personalized disease prevention based on a genetic polymorphism that is prevalent among East Asians.

7.
Cell Rep ; 34(13): 108912, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789104

RESUMO

The fine-scale dynamics from euchromatin (EC) to facultative heterochromatin (fHC) has remained largely unclear. Here, we focus on Xist and its silencing initiator Tsix as a paradigm of transcription-mediated conversion from EC to fHC. In mouse epiblast stem cells, induction of Tsix recapitulates the conversion at the Xist promoter. Investigating the dynamics reveals that the conversion proceeds in a stepwise manner. Initially, a transient opened chromatin structure is observed. In the second step, gene silencing is initiated and dependent on Tsix, which is reversible and accompanied by simultaneous changes in multiple histone modifications. At the last step, maintenance of silencing becomes independent of Tsix and irreversible, which correlates with occupation of the -1 position of the transcription start site by a nucleosome and initiation of DNA methylation introduction. This study highlights the hierarchy of multiple chromatin events upon stepwise gene silencing establishment.


Assuntos
Eucromatina/metabolismo , Heterocromatina/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Transcrição Gênica , Animais , Fator de Ligação a CCCTC/metabolismo , Metilação de DNA/genética , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Inativação Gênica , Camadas Germinativas/citologia , Histonas/metabolismo , Camundongos , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Fator de Transcrição YY1/metabolismo
8.
Sci Rep ; 10(1): 14381, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873855

RESUMO

The expression level of transcription factor c-Myb oscillates during hematopoiesis. Fbw7 promotes ubiquitin-mediated degradation of c-Myb, which is dependent on phosphorylation of Thr572. To investigate the physiological relevance of Fbw7-mediated c-Myb degradation, we generated mutant mice carrying c-Myb-T572A (TA). Homozygous mutant (TA/TA) mice exhibited a reduction in the number of peripheral red blood cells and diminished erythroblasts in bone marrow, presumably as a result of failure during erythroblast differentiation. We found that c-Myb high-expressing cells converged in the Lin-CD71+ fraction, and the expression of c-Myb was higher in TA/TA mice than in wild-type mice. Moreover, TA/TA mice had an increased proportion of the CD71+ subset in Lin- cells. The c-Myb level in the Lin-CD71+ subset showed three peaks, and the individual c-Myb level was positively correlated with that of c-Kit, a marker of undifferentiated cells. Ultimately, the proportion of c-Mybhi subgroup was significantly increased in TA/TA mice compared with wild-type mice. These results indicate that a delay in reduction of c-Myb protein during an early stage of erythroid differentiation creates its obstacle in TA/TA mice. In this study, we showed the T572-dependent downregulation of c-Myb protein is required for proper differentiation in early-stage erythroblasts, suggesting the in vivo significance of Fbw7-mediated c-Myb degradation.


Assuntos
Diferenciação Celular/genética , Eritroblastos/metabolismo , Hematopoese/genética , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Animais , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Técnicas de Introdução de Genes , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/genética , Proteólise , Transfecção
9.
Mol Cancer Res ; 18(9): 1367-1378, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527949

RESUMO

Recent studies have demonstrated that lysine acetylation of histones is crucial for nucleotide excision repair (NER) by relaxing the chromatin structure, which facilitates the recruitment of repair factors. However, few studies have focused on the contribution of histone deacetylases (HDAC) to NER. Here, we found that histone H3 Lys14 (H3K14) was deacetylated by HDAC3 after UV irradiation. Depletion of HDAC3 caused defects in cyclobutene pyrimidine dimer excision and sensitized cells to UV irradiation. HDAC3-depleted cells had impaired unscheduled DNA synthesis, but not recovery of RNA synthesis, which indicates that HDAC3 was required for global genome NER. Moreover, xeroderma pigmentosum, complementation group C (XPC) accumulation at the local UV-irradiated area was attenuated in HDAC3-depleted cells. In addition to the delay of XPC accumulation at DNA damage sites, XPC ubiquitylation was inhibited in HDAC3-depleted cells. These results suggest that the deacetylation of histone H3K14 by HDAC3 after UV irradiation contributes to XPC recruitment to DNA lesions to promote global genome NER. IMPLICATIONS: Involvement of histone deacetylation for XPC accumulation after UV irradiation indicates conversion of chromatin structure is essential for nucleotide excision repair in human cancer cells.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Histona Desacetilases/genética , Humanos , Raios Ultravioleta/efeitos adversos
10.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R677-R690, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32048867

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) is an enzyme involved in redox homeostasis as well as the detoxification process in alcohol metabolism. Nearly 8% of the world's population have an inactivating mutation in the ALDH2 gene. However, the expression patterns and specific functions of ALDH2 in skeletal muscles are still unclear. Herein, we report that ALDH2 is expressed in skeletal muscle and is localized to the mitochondrial fraction. Oxidative muscles had a higher amount of ALDH2 protein than glycolytic muscles. We next comprehensively investigated whether ALDH2 knockout in mice induces mitochondrial adaptations in gastrocnemius muscle (for example, content, enzymatic activity, respiratory function, supercomplex formation, and functional networking). We found that ALDH2 deficiency resulted in partial mitochondrial dysfunction in gastrocnemius muscle because it increased mitochondrial reactive oxygen species (ROS) emission (2',7'-dichlorofluorescein and MitoSOX oxidation rate during respiration) and the frequency of regional mitochondrial depolarization. Moreover, we determined whether ALDH2 deficiency and the related mitochondrial dysfunction trigger mitochondrial stress and quality control responses in gastrocnemius muscle (for example, mitophagy markers, dynamics, and the unfolded protein response). We found that ALDH2 deficiency upregulated the mitochondrial serine protease Omi/HtrA2 (a marker of the activation of a branch of the mitochondrial unfolded protein response). In summary, ALDH2 deficiency leads to greater mitochondrial ROS production, but homeostasis can be maintained via an appropriate stress response.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Genótipo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Regulação da Expressão Gênica , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio
11.
Cancer Res ; 79(11): 2821-2838, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952633

RESUMO

TGFß is involved in various biological processes, including development, differentiation, growth regulation, and epithelial-mesenchymal transition (EMT). In TGFß/Smad signaling, receptor-activated Smad complexes activate or repress their target gene promoters. Smad cofactors are a group of Smad-binding proteins that promote recruitment of Smad complexes to these promoters. Long noncoding RNAs (lncRNA), which behave as Smad cofactors, have thus far not been identified. Here, we characterize a novel lncRNA EMT-associated lncRNA induced by TGFß1 (ELIT-1). ELIT-1 was induced by TGFß stimulation via the TGFß/Smad pathway in TGFß-responsive cell lines. ELIT-1 depletion abrogated TGFß-mediated EMT progression and expression of TGFß target genes including Snail, a transcription factor critical for EMT. A positive correlation between high expression of ELIT-1 and poor prognosis in patients with lung adenocarcinoma and gastric cancer suggests that ELIT-1 may be useful as a prognostic and therapeutic target. RIP assays revealed that ELIT-1 bound to Smad3, but not Smad2. In conjunction with Smad3, ELIT-1 enhanced Smad-responsive promoter activities by recruiting Smad3 to the promoters of its target genes including Snail, other TGFß target genes, and ELIT-1 itself. Collectively, these data show that ELIT-1 is a novel trans-acting lncRNA that forms a positive feedback loop to enhance TGFß/Smad3 signaling and promote EMT progression. SIGNIFICANCE: This study identifies a novel lncRNA ELIT-1 and characterizes its role as a positive regulator of TGFß/Smad3 signaling and EMT.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2821/F1.large.jpg.


Assuntos
Transição Epitelial-Mesenquimal/genética , RNA Longo não Codificante/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Linhagem Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Prognóstico , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Proteína Smad3/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Fator de Crescimento Transformador beta1/genética
12.
Neurosci Lett ; 685: 50-54, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30036570

RESUMO

Acetaldehyde (AcH) and salsolinol play important roles in the central effects of ethanol. This study aimed to investigate the effect of administration of AcH on dopamine (DA), DA-derived salsolinol and serotonin (5-HT) levels in the dorsal striatum of Aldh2-knockout (Aldh2-KO) and C57BL/6 N (WT) mice. Animals were treated with AcH (50, 100 and 200 mg/kg) intraperitoneally and dialysate levels of DA, 5-HT and salsolinol were determined using in vivo microdialysis coupled with HPLC-ECD. Salsolinol was first detected at 20 min after AcH administration, and reached its peak concentration (WT mice: 0.29 ± 0.22 pg/µl; Aldh2-KO mice: 0.63 ± 0.17 pg/µl) at 25 min in the 200 mg/kg AcH group, before decreasing rapidly and reaching zero at approximately 55-80 min. Treatment with 100 and 200 mg/kg AcH increased levels of salsolinol in both WT and Aldh2-KO mice, with 200 mg/kg AcH inducing a higher level of salsolinol in Aldh2-KO mice than in WT mice. Treatment with 50 mg/kg AcH produced a small increase in salsolinol levels in Aldh2-KO mice, whereas no elevation of salsolinol was detected in WT mice. The increase in salsolinol formation was found to occur a dose-dependent manner in both genotypes. Administration of AcH and the subsequent changes in salsolinol concentrations did not change DA or 5-HT levels in either genotype. Our study suggests that AcH dose-dependently increases the formation of salsolinol in the dorsal striatum of mice, which provides further support for the role of AcH in salsolinol formation in the animal brain.


Assuntos
Acetaldeído/farmacologia , Aldeído-Desidrogenase Mitocondrial/efeitos dos fármacos , Isoquinolinas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dopamina/farmacologia , Etanol/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serotonina/farmacologia
15.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415439

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and no curative therapies. SCF-Skp2 E3 ligase is a target for cancer therapy, but there have been no reports about Skp2 as a target for IPF. Here we demonstrate that Skp2 is a promising therapeutic target for IPF. We examined whether disrupting Skp2 suppressed pulmonary fibrosis in a bleomycin (BLM)-induced mouse model and found that pulmonary fibrosis was significantly suppressed in Skp2-deficient mice compared with controls. The pulmonary accumulation of fibrotic markers such as collagen type 1 and fibronectin in BLM-infused mice was decreased in Skp2-deficient mice. Moreover, the number of bronchoalveolar lavage fluid cells accompanied with pulmonary fibrosis was significantly diminished. Levels of the Skp2 target p27 were significantly decreased by BLM-administration in wild-type mice, but recovered in Skp2-/- mice. In vimentin-positive mesenchymal fibroblasts, the decrease of p27-positive cells and increase of Ki67-positive cells by BLM-administration was suppressed by Skp2-deficency. As these results suggested that inhibiting Skp2 might be effective for BLM-induced pulmonary fibrosis, we next performed a treatment experiment using the Skp2 inhibitor SZL-P1-41. As expected, BLM-induced pulmonary fibrosis was significantly inhibited by SZL-P1-41. Moreover, p27 levels were increased by the SZL-P1-41 treatment, suggesting p27 may be an important Skp2 target for BLM-induced pulmonary fibrosis. Our study suggests that Skp2 is a potential molecular target for human pulmonary fibrosis including IPF.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Bleomicina/efeitos adversos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Animais , Biomarcadores , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genótipo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Fibrose Pulmonar/patologia , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
16.
Br J Cancer ; 117(9): 1360-1370, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29065427

RESUMO

BACKGROUND: Tumour stroma has important roles in the development of colorectal cancer (CRC) metastasis. We aimed to clarify the roles of microRNAs (miRNAs) and their target genes in CRC stroma in the development of liver metastasis. METHODS: Tumour stroma was isolated from formalin-fixed, paraffin-embedded tissues of primary CRCs with or without liver metastasis by laser capture microdissection, and miRNA expression was analysed using TaqMan miRNA arrays. RESULTS: Hierarchical clustering classified 16 CRCs into two groups according to the existence of synchronous liver metastasis. Combinatory target prediction identified tenascin C as a predicted target of miR-198, one of the top 10 miRNAs downregulated in tumour stroma of CRCs with synchronous liver metastasis. Immunohistochemical analysis of tenascin C in 139 primary CRCs revealed that a high staining intensity was correlated with synchronous liver metastasis (P<0.001). Univariate and multivariate analyses revealed that the tenascin C staining intensity was an independent prognostic factor to predict postoperative overall survival (P=0.005; n=139) and liver metastasis-free survival (P=0.001; n=128). CONCLUSIONS: Alterations of miRNAs in CRC stroma appear to form a metastasis-permissive environment that can elevate tenascin C to promote liver metastasis. Tenascin C in primary CRC stroma has the potential to be a novel biomarker to predict postoperative prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , MicroRNAs/genética , Células Estromais/patologia , Tenascina/metabolismo , Idoso , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metástase Linfática , Masculino , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Células Estromais/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
17.
Nat Commun ; 8: 16102, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28719581

RESUMO

HBO1, a histone acetyl transferase, is a co-activator of DNA pre-replication complex formation. We recently reported that HBO1 is phosphorylated by ATM and/or ATR and binds to DDB2 after ultraviolet irradiation. Here, we show that phosphorylated HBO1 at cyclobutane pyrimidine dimer (CPD) sites mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites. Furthermore, HBO1 facilitates accumulation of SNF2H and ACF1, an ATP-dependent chromatin remodelling complex, to CPD sites. Depletion of HBO1 inhibited repair of CPDs and sensitized cells to ultraviolet irradiation. However, depletion of HBO1 in cells derived from xeroderma pigmentosum patient complementation groups, XPE, XPC and XPA, did not lead to additional sensitivity towards ultraviolet irradiation. Our findings suggest that HBO1 acts in concert with SNF2H-ACF1 to make the chromosome structure more accessible to canonical nucleotide excision repair factors.


Assuntos
Reparo do DNA , Histona Acetiltransferases/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Dímeros de Pirimidina/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta
18.
Mol Cancer Res ; 15(10): 1388-1397, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28634225

RESUMO

The known oncogene cyclin D1 (CCND1) participates in progression of the cell cycle from G1 to S-phase. Expression of cyclin D1 is frequently promoted in multiple human cancers including non-small cell lung cancer (NSCLC). However, a relationship between cyclin D1 expression and the prognosis of NSCLC has not been confirmed. NKX2-1 is a homeobox transcription factor involved in pulmonary development as a differentiation-promoting factor. In NSCLC, it acts as a metastasis suppressor and correlates with a good prognosis. Here, NKX2-1-binding motifs were identified in the cyclin D1 promoter, but it has not been clarified whether NKX2-1 is involved in cyclin D1 expression in NSCLC. To shed light on this issue, endogenous NKX2-1 was depleted in NSCLC cell lines, which resulted in decreased cyclin D1 mRNA and protein. In contrast, forced overexpression of NKX2-1 increased cyclin D1 levels. Moreover, NKX2-1 directly bound to the cyclin D1 promoter and enhanced its activity. Finally, using human NSCLC clinical specimens, it was determined that both NKX2-1 protein and mRNA were significantly correlated with cyclin D1 expression status in adenocarcinomas. These results indicate that NKX2-1 directly and positively regulates transcription of cyclin D1 Finally, expression of NKX2-1, but not cyclin D1, was significantly associated with metastatic incidence as an independent good prognostic factor of adenocarcinoma.Implications: NKX2-1-expressing adenocarcinomas, whereas NKX2-1 promoted cyclin D1 expression, may show good prognosis features by the metastasis inhibition potency of NKX2-1 regardless cyclin D1 expression. Mol Cancer Res; 15(10); 1388-97. ©2017 AACR.


Assuntos
Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclina D1/genética , Neoplasias Pulmonares/genética , Fator Nuclear 1 de Tireoide/metabolismo , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Ciclina D1/química , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Metástase Neoplásica , Prognóstico , Regiões Promotoras Genéticas , Análise de Sobrevida , Fator Nuclear 1 de Tireoide/genética
19.
Environ Health Prev Med ; 21(6): 395-402, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27714678

RESUMO

Because serum transaminases elevate alcohol dose dependently as a consequence of liver injury, they serve as useful biological markers of excessive drinking. However, these markers are inadequate in individuals with a defective allele of the aldehyde dehydrogenase 2 gene, ALDH2*2, because they show a different correlation with the amount of ethanol. For example, the serum alanine aminotransferase (ALT) level could become even lower than the baseline after alcohol intake in ALDH2*2 carriers. In fact, multiple studies suggest that ALDH2*2 is a hepato-protective factor in healthy individuals. Importantly, excessive drinking is particularly dangerous in carriers of ALDH2*2 because the risk of alcohol-related cancer is much higher than that for ALDH2*1/*1 carriers. Without recognizing the genotype interaction on serum transaminase, the opportunity to warn people about potential cancer risks is missed owing to incorrect interpretation. This is particularly important in East Asian countries where approximately half of the population carries the ALDH2*2 allele. To date, the mechanism of liver protection from ethanol load in individuals with ALDH2*2 has not been fully elucidated. However, some reasonable mechanisms have been suggested by experimental studies, including remodelling of detoxifying systems. Further studies to uncover the whole mechanism are anticipated.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Carcinogênese/genética , Neoplasias/genética , Polimorfismo Genético , Transaminases/sangue , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Biomarcadores/sangue , Humanos , Neoplasias/etiologia , Neoplasias/fisiopatologia
20.
Anticancer Res ; 36(4): 1605-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27069137

RESUMO

BACKGROUND: P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. MATERIALS AND METHODS: U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. RESULTS: Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. CONCLUSION: These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53.


Assuntos
RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Etoposídeo/farmacologia , Humanos , Mutagênicos/farmacologia , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA