Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(21): e202400150, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38302733

RESUMO

In this study we develop a strategy to insulate 6,6 -Phenyl C61 butyric acid methyl ester (PCBM) on the basal plane of transition metal dichalcogenides (TMDs). Concretely single layers of MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 and ultrathin MoO2 and WO2 were grown via chemical vapor deposition (CVD). Then, the thiol group of a PCBM modified with cysteine reacts with the chalcogen vacancies on the basal plane of TMDs, yielding PCBM-MoS2, PCBM-MoSe2, PCBM-WS2, PCBM-WSe2, PCBM-WTe2, PCBM-MoO2 and PCBM-WO2. Afterwards, all the hybrid materials were characterized using several techniques, including XPS, Raman spectroscopy, TEM, AFM, and cyclic voltammetry. Furthermore, PCBM causes a unique optical and electrical impact in every TMDs. For MoS2 devices, the conductivity and photoluminescence (PL) emission achieve a remarkable enhancement of 1700 % and 200 % in PCBM-MoS2 hybrids. Similarly, PCBM-MoTe2 hybrids exhibit a 2-fold enhancement in PL emission at 1.1 eV. On the other hand, PCBM-MoSe2, PCBM-WSe2 and PCBM-WS2 hybrids exhibited a new interlayer exciton at 1.29-1.44, 1.7 and 1.37-154 eV along with an enhancement of the photo-response by 2400, 3200 and 600 %, respectively. Additionally, PCBM-WTe2 and PCBM-WO2 showed a modest photo-response, in sharp contrast with pristine WTe2 or WO2 which archive pure metallic character.

2.
J Phys Chem B ; 127(30): 6726-6733, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37474256

RESUMO

In the present study, we investigated the intermolecular interactions between single-walled carbon nanotubes (SWCNTs) and encapsulated molecules by polarization resonance Raman microscopy. C70 encapsulated in SWCNTs is investigated under incident laser polarization parallel and perpendicular to the tube axis. We employed two excitation laser wavelengths 442 and 532 nm, which are in resonance with different electronic states of C70. Under 532 nm excitation, no distinct polarization dependence is found in the Raman spectral pattern, while under 442 nm excitation, a peak not previously seen for this excitation wavelength was clearly observed for parallel excitation. This result can be explained by the modulation of the resonance Raman process via a charge transfer contribution between C70 and the SWCNTs, which is sensitive to the incident polarization as well as the excitation wavelength. The intensity of the local electronic field inside a SWCNT is higher for the parallel excitation than the perpendicular excitation when the nanotubes are in a bundle. The results can be explained by field localization effects at the nanotube walls, qualitatively supported by finite-difference time-domain simulations.

3.
JACS Au ; 3(3): 775-784, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006761

RESUMO

Although the synthesis of monolayer transition metal dichalcogenides has been established in the last decade, synthesizing nanoribbons remains challenging. In this study, we have developed a straightforward method to obtain nanoribbons with controllable widths (25-8000 nm) and lengths (1-50 µm) by O2 etching of the metallic phase in metallic/semiconducting in-plane heterostructures of monolayer MoS2. We also successfully applied this process for synthesizing WS2, MoSe2, and WSe2 nanoribbons. Furthermore, field-effect transistors of the nanoribbons show an on/off ratio of larger than 1000, photoresponses of 1000%, and time responses of 5 s. The nanoribbons were compared with monolayer MoS2, highlighting a substantial difference in the photoluminescence emission and photoresponses. Additionally, the nanoribbons were used as a template to build one-dimensional (1D)-1D or 1D-2D heterostructures with various transition metal dichalcogenides. The process developed in this study offers simple production of nanoribbons with applications in several fields of nanotechnology and chemistry.

4.
Nanoscale ; 15(12): 5948-5953, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36883438

RESUMO

van der Waals (vdW) heterostructures, which can be assembled with various two-dimensional materials, provide a versatile platform for exploring emergent phenomena. Here, we report an observation of the photovoltaic effect in a WS2/MoS2 vdW heterostructure. Light excitation of WS2/MoS2 at a wavelength of 633 nm yields a photocurrent without applying bias voltages, and the excitation power dependence of the photocurrent shows characteristic crossover from a linear to square root dependence. Photocurrent mapping has clearly shown that the observed photovoltaic effect arises from the WS2/MoS2 region, not from Schottky junctions at electrode contacts. Kelvin probe microscopy observations show no slope in the electrostatic potential, excluding the possibility that the photocurrent originates from an unintentionally formed built-in potential.

5.
Nanoscale ; 15(9): 4570-4580, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36762571

RESUMO

We fabricated sensors by modifying the surface of MoS2 and WS2 with COVID-19 antibodies and investigated their characteristics, including stability, reusability, sensitivity, and selectivity. Thiols and disulfanes in antibodies strongly interact with vacant Mo or W sites of MoS2 or WS2, yielding durable devices that are stable for several days in the air or water. More importantly, detachment of the antibodies is suppressed even during the aggressive cleaning process of the devices at pH 3, which allows reusing the same device in several experiments without appreciable loss of sensitivity. Therefore, the nanodevice may be employed in samples of different patients. Further, we found a limit of detection (LOD) of 1 fg ml-1 at room temperature, time responses of 1 second, and selectivity against interferences such as KLH protein or Albumin.


Assuntos
COVID-19 , Humanos , Albuminas , Anticorpos , Limite de Detecção , Molibdênio , Antígenos/imunologia
6.
Adv Sci (Weinh) ; 9(2): e2103460, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841726

RESUMO

Studying two-dimensional (2D) van der Waals (vdW) moiré superlattices and their interlayer interactions have received surging attention after recent discoveries of many new phases of matter that are highly tunable. Different atomistic registry between layers forming the inner and outer nanotubes can also form one-dimensional (1D) vdW moiré superlattices. In this review, experimental observations and theoretical perspectives related to interlayer interactions in 1D vdW moiré superlattices are summarized. The discussion focuses on double-walled carbon nanotubes (DWNTs), a model 1D vdW moiré system, and the authors highlight the new optical features emerging from the non-trivial strong interlayer coupling effect and the unique physics in 1D DWNTs. Future directions and questions in probing the intriguing physical phenomena in 1D vdW moiré superlattices such as, correlated physics in different 1D moiré systems beyond DWNTs are proposed and discussed.

7.
ACS Nano ; 15(12): 19225-19232, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34843228

RESUMO

We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.

8.
Nanoscale ; 13(19): 8948-8957, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33960349

RESUMO

We describe the basal plane functionalization of chemically exfoliated molybdenum disulfide (ce-MoS2) nanosheets with a benzo-15-crown-5 ether (B15C5), promoted by the chemistry of diazonium salts en route to the fabrication and electrochemical assessment of an ion-responsive electrode. The success of the chemical modification of ce-MoS2 nanosheets was investigated by infrared and Raman spectroscopy, and the amount of the incorporated crown ether was estimated by thermogravimetric analysis. Raman spatial mapping at on-resonance excitation allowed us to disclose the structural characteristics of the functionalized B15C5-MoS2 nanosheets and the impact of basal plane functionalization to the stabilization of the 1T phase of ce-MoS2. Morphological investigation of the B15C5-MoS2 hybrid was implemented by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, fast-Fourier-transform analysis and in situ energy dispersive X-ray spectroscopy revealed the crystal lattice of the modified nanosheets and the presence of crown-ether addends, respectively. Finally, B15C5-MoS2 electrodes were constructed and evaluated as ion-selective electrodes for sodium ions in aqueous solution and an artificial sweat matrix.


Assuntos
Éteres de Coroa , Molibdênio , Eletrodos , Íons , Microscopia Eletrônica de Transmissão
9.
Angew Chem Int Ed Engl ; 60(16): 9120-9126, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33559945

RESUMO

The covalent functionalization of MoS2 with a perylenediimide (PDI) is reported and the study is accompanied by detailed characterization of the newly prepared MoS2 -PDI hybrid material. Covalently functionalized MoS2 interfacing organic photoactive species has shown electron and/or energy accepting, energy reflecting or bi-directional electron accepting features. Herein, a rationally designed PDI, unsubstituted at the perylene core to act as electron acceptor, forces MoS2 to fully demonstrate for the first time its electron donor capabilities. The photophysical response of MoS2 -PDI is visualized in an energy-level diagram, while femtosecond transient absorption studies disclose the formation of MoS2 .+ -PDI.- charge separated state. The tunable electronic properties of MoS2 , as a result of covalently linking photoactive organic species with precise characteristics, unlock their potentiality and enable their application in light-harvesting and optoelectronic devices.

10.
ACS Nano ; 15(1): 1370-1377, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356145

RESUMO

Squeezing bubbles and impurities out of interlayer spaces by applying force through a few-layer graphene capping layer leads to van der Waals heterostructures with the ultraflat structure free from random electrostatic potential arising from charged impurities. Without the graphene capping layer, a squeezing process with an AFM tip induces applied-force-dependent charges of Δn ∼ 2 × 1012 cm-2 µN-1, resulting in the significant intensity of trions in photoluminescence spectra of MoSe2 at low temperature. We found that a hBN/MoSe2/hBN prepared with the "graphene-capping-assisted AFM nano-squeezing method" shows a strong excitonic emission with negligible trion peak, and the residual line width of the exciton peak is only 2.2 meV, which is comparable to the homogeneous limit. Furthermore, in this high-quality sample, we found that the formation of biexciton occurs even at extremely low excitation power (Φph ∼ 2.3 × 1019 cm-2 s-1) due to the enhanced collisions between excitons.

11.
ACS Omega ; 5(49): 31692-31699, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344821

RESUMO

Recent studies have revealed that van der Waals (vdW) heteroepitaxial growth of 2D materials on crystalline substrates, such as hexagonal boron nitride (hBN), leads to the formation of self-aligned grains, which results in defect-free stitching between the grains. However, how the weak vdW interaction causes a strong limitation on the crystal orientation of grains is still not understood yet. In this work, we have focused on investigating the microscopic mechanism of the self-alignment of MoS2 grains in vdW epitaxial growth on hBN. Using the density functional theory and the Lennard-Jones potential, we found that the interlayer energy between MoS2 and hBN strongly depends on the size and crystal orientation of MoS2. We also found that, when the size of MoS2 is several tens of nanometers, the rotational energy barrier can exceed ∼1 eV, which should suppress rotation to align the crystal orientation of MoS2 even at the growth temperature.

12.
J Chem Phys ; 153(8): 084702, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872864

RESUMO

In this study, we develop a new approach for stabilization of metallic phases of monolayer MoS2 through the formation of lateral heterostructures composed of semiconducting/metallic MoS2. The structure of metallic (a mixture of T and T') and semiconducting (2H) phases was unambiguously characterized by Raman spectroscopy, x-ray photoelectron spectroscopy, photoluminescence imaging, and transmission electron microscope observations. The amount of NaCl, reaction temperature, reaction time, and locations of substrates are essential for controlling the percentage of metallic/semiconducting phases in lateral heterostructures; loading a large amount of NaCl at low temperatures with short reaction times prefers metallic phases. The existence of the semiconducting phase in MoS2 lateral heterostructures significantly enhances the stability of the metallic phases through passivation of reactive edges. The same approach can be applied to other transition metal dichalcogenides (TMDs), such as WS2, leading to boosting of basic research and application of TMDs in metallic phases.

13.
Phys Rev Lett ; 124(10): 106101, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216387

RESUMO

We report the first experimental observation of a strong-coupling effect in a one-dimensional moiré superlattice. We study one-dimensional double-wall carbon nanotubes (DWCNTs) in which van der Waals-coupled two single nanotubes form a one-dimensional moiré superlattice. We experimentally combine Rayleigh scattering spectroscopy and electron beam diffraction on the same individual DWCNTs to probe the optical transitions of the structure-identified DWCNTs in the visible spectral range. Among more than 30 structure-identified DWCNTs examined, we experimentally observed and identified a drastic change of the optical transition spectrum in a DWCNT with chirality (12,11)@(17,16). The origin of the marked change is attributed to the strong intertube coupling effect in the moiré superlattice formed by two nearly armchair nanotubes. Our numerical simulation is consistent with the experimental findings.

14.
Langmuir ; 34(35): 10243-10249, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30099877

RESUMO

Monolayer molybdenum disulfide (MoS2) is an atomically thin semiconducting material with a direct band gap. This physical property is attributable to atomically thin optical devices such as sensors, light-emitting devices, and photovoltaic cells. Recently, a near-unity photoluminescence (PL) quantum yield of a monolayer MoS2 was demonstrated via a treatment with a molecular acid, bis(trifluoromethane)sulfonimide (TFSI); however, the mechanism still remains a mystery. Here, we work on PL enhancement of monolayer MoS2 by treatment of Brønsted acids (TFSI and sulfuric acid (H2SO4)) to identify the importance of the protonated environment. In TFSI as an acid, different solvents-1,2-dichloroethane (DCE), acetonitrile, and water-were studied, as they show quite different acidity in solution. All of the solvents showed PL enhancement, and the highest was observed in DCE. This behavior in DCE would be due to the higher acidity than others have. Acids from different anions can also be studied in water as a common solvent. Both TFSI and H2SO4 showed similar PL enhancement (∼4-8 enhancement) at the same proton concentration, indicating that the proton is a key factor to enhance the PL intensity. Finally, we considered another cation, Li+ from Li2SO4, instead of H2SO4, in water. Although Li and H atoms showed similar binding energy on MoS2 from theoretical calculations, Li2SO4 treatment showed little PL enhancement; only coexisting H2SO4 reproduced the enhancement. This study demonstrated the importance of a protonated environment to increase the PL intensity of monolayer MoS2. The study will lead to a solution to achieve high optical quality and to implementation for atomically thin optical devices.

15.
Sci Rep ; 8(1): 8098, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802273

RESUMO

Extending π-electron systems are among the most important topics in physics, chemistry and materials science because they can result in functional materials with applications in electronics and optics. Conventional processes for π-electron extension, however, can generate products exhibiting chemical instability, poor solubility or disordered structures. Herein, we report a novel strategy for the synthesis of π-conjugated polymers within the interiors of carbon nanotubes (CNTs). In this process, thiophene-based oligomers are encapsulated within CNTs as precursors and are subsequently polymerized by thermal annealing. This polymerization increases the effective conjugation length of the thiophenes, as confirmed by transmission electron microscopy and absorption peak red shifts. This work also demonstrates that these polythiophenes can serve as effective markers for individual CNTs during Raman imaging with single-wavelength laser excitation due to their strong absorbance. In addition, stable carrier injection into the encapsulated polythiophenes is found to be possible via electrochemical doping. Such doping has the potential to produce π-electron-based one-dimensional conductive wires and highly stable electrochromic devices.

16.
ACS Nano ; 12(3): 2498-2505, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29481065

RESUMO

A van der Waals (vdW) heterostructure composed of multivalley systems can show excitonic optical responses from interlayer excitons that originate from several valleys in the electronic structure. In this work, we studied photoluminescence (PL) from a vdW heterostructure, WS2/MoS2, deposited on hexagonal boron nitride (hBN) flakes. PL spectra from the fabricated heterostructures observed at room temperature show PL peaks at 1.3-1.7 eV, which are absent in the PL spectra of WS2 or MoS2 monolayers alone. The low-energy PL peaks we observed can be decomposed into three distinct peaks. Through detailed PL measurements and theoretical analysis, including PL imaging, time-resolved PL measurements, and calculation of dielectric function ε(ω) by solving the Bethe-Salpeter equation with G0 W0, we concluded that the three PL peaks originate from direct K-K interlayer excitons, indirect Q-Γ interlayer excitons, and indirect K-Γ interlayer excitons.

17.
Sci Rep ; 7(1): 322, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28336931

RESUMO

Monolayer transition metal dichalcogenides (TMDCs) including WS2, MoS2, WSe2 and WS2, are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm2) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.

18.
J Am Chem Soc ; 138(34): 11001-8, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27486790

RESUMO

Organic nanotubes (ONTs) are tubular nanostructures composed of small molecules or macromolecules that have found various applications including ion sensor/channels, gas absorption, and photovoltaics. While most ONTs are constructed by self-assembly processes based on weak noncovalent interactions, this unique property gives rise to the inherent instability of their tubular structures. Herein, we report a simple "helix-to-tube" strategy to construct robust, covalent ONTs from easily accessible poly(m-phenylene diethynylene)s (poly-PDEs) possessing chiral amide side chains that can adopt a helical conformation through hydrogen-bonding interactions. The helically folded poly-PDEs subsequently undergo light-induced cross-linking at longitudinally aligned 1,3-butadiyne moieties across the whole helix to form covalent tubes (ONTs) both in solution and solid phases. The structures of poly-PDEs and covalent ONTs were characterized by spectroscopic analyses, diffraction analysis, and microscopic analyses. We envisage that this simple yet powerful "helix-to-tube" strategy will generate a range of ONT-based materials by introducing functional moieties into a monomer.

19.
ACS Nano ; 10(1): 1475-80, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26731015

RESUMO

Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.

20.
Angew Chem Int Ed Engl ; 55(1): 199-202, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530527

RESUMO

D5h-symmetric fullerene C70 (D5h-C70) is one of the most abundant members of the fullerene family. One longstanding mystery in the field of fullerene chemistry is whether D5h-C70 is capable of accommodating a rare-earth metal atom to form an endohedral metallofullerene M@D5h-C70, which would be expected to show novel electronic properties. The molecular structure of La@C70 remains unresolved since its discovery three decades ago because of its extremely high instability under ambient conditions and insolubility in organic solvents. Herein, we report the single-crystal X-ray structure of La@C70(CF3)3, which was obtained through in situ exohedral functionalization by means of trifluoromethylation. The X-ray crystallographic study reveals that La@C70(CF3)3 is the first example of an endohedral rare-earth fullerene based on D5h-C70. The dramatically enhanced stability of La@C70(CF3)3 compared to La@C70 can be ascribed to trifluoromethylation-induced bandgap enlargement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA