Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(32): eadn4650, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110809

RESUMO

One-third of Mars' surface has shallow-buried H2O, but it is currently too cold for use by life. Proposals to warm Mars using greenhouse gases require a large mass of ingredients that are rare on Mars' surface. However, we show here that artificial aerosols made from materials that are readily available at Mars-for example, conductive nanorods that are ~9 micrometers long-could warm Mars >5 × 103 time smore effectively than the best gases. Such nanoparticles forward-scatter sunlight and efficiently block upwelling thermal infrared. Like the natural dust of Mars, they are swept high into Mars' atmosphere, allowing delivery from the near-surface. For a 10-year particle lifetime, two climate models indicate that sustained release at 30 liters per second would globally warm Mars by ≳30 kelvin and start to melt the ice. Therefore, if nanoparticles can be made at scale on (or delivered to) Mars, then the barrier to warming of Mars appears to be less high than previously thought.

2.
Nature ; 617(7962): 701-705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198481

RESUMO

Temperate Earth-sized exoplanets around late-M dwarfs offer a rare opportunity to explore under which conditions planets can develop hospitable climate conditions. The small stellar radius amplifies the atmospheric transit signature, making even compact secondary atmospheres dominated by N2 or CO2 amenable to characterization with existing instrumentation1. Yet, despite large planet search efforts2, detection of low-temperature Earth-sized planets around late-M dwarfs has remained rare and the TRAPPIST-1 system, a resonance chain of rocky planets with seemingly identical compositions, has not yet shown any evidence of volatiles in the system3. Here we report the discovery of a temperate Earth-sized planet orbiting the cool M6 dwarf LP 791-18. The newly discovered planet, LP 791-18d, has a radius of 1.03 ± 0.04 R⊕ and an equilibrium temperature of 300-400 K, with the permanent night side plausibly allowing for water condensation. LP 791-18d is part of a coplanar system4 and provides a so-far unique opportunity to investigate a temperate exo-Earth in a system with a sub-Neptune that retained its gas or volatile envelope. On the basis of observations of transit timing variations, we find a mass of 7.1 ± 0.7 M⊕ for the sub-Neptune LP 791-18c and a mass of [Formula: see text] for the exo-Earth LP 791-18d. The gravitational interaction with the sub-Neptune prevents the complete circularization of LP 791-18d's orbit, resulting in continued tidal heating of LP 791-18d's interior and probably strong volcanic activity at the surface5,6.

3.
Proc Natl Acad Sci U S A ; 120(11): e2209751120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877840

RESUMO

Whether Venus was ever habitable is a key question driving missions to Earth's sister planet in the next decade. Venus today has a dry, O2-poor atmosphere, but recent work has proposed that early Venus may have had liquid water [J. Krissansen-Totton, J. J. Fortney, F. Nimmo, Planet. Sci. J. 2, 216 (2021)] and reflective clouds that could have sustained habitable conditions until 0.7 Ga [J. Yang, G. Boué, D. C. Fabrycky, D. S. Abbot, Astrophys. J. 787, L2 (2014), M. J. Way, A. D. Del Genio, J. Geophys. Res.: Planets 125, e2019JE006276 (2020)]. Water present at the end of a habitable era must since have been lost by photodissociation and H escape, causing buildup of atmospheric oxygen [F. Tian, Earth Planet. Sci. Lett. 432, 126-132 (2015)]. We present a time-dependent model of Venus's atmospheric composition starting from the end of a hypothetical habitable era with surface liquid water. We find that O2 loss to space, oxidation of reduced atmospheric species, oxidation of lava, and oxidation of a surface magma layer formed in a runaway greenhouse climate can remove O2 from up to 500 m global equivalent layer (GEL) (30% of an Earth ocean), unless melts on Venus had a much lower oxygen fugacity than Mid Ocean Ridge melts on Earth, which increases the upper limit twofold. Volcanism is required to supply oxidizable fresh basalt and reduced gases to the atmosphere but also contributes 40Ar. Consistency with Venus's modern atmospheric composition occurs in less than 0.4% of runs, in a narrow parameter range where the reducing power introduced by O2 loss processes can balance O2 introduced by H escape. Our models favor hypothetical habitable eras ending before 3 Ga and very reduced melt oxygen fugacities three log units below the fayalite-magnetite-quartz buffer (fO2< FMQ-3), among other constraints.

4.
Sci Adv ; 8(21): eabo5894, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613275

RESUMO

Early Mars had rivers, but the cause of Mars's wet-to-dry transition remains unknown. Past climate on Mars can be probed using the spatial distribution of climate-sensitive landforms. We analyzed global databases of water-worked landforms and identified changes in the spatial distribution of rivers over time. These changes are simply explained by comparison to a simplified meltwater model driven by an ensemble of global climate model simulations, as the result of ≳10 K global cooling, from global average surface temperature [Formula: see text] ≥ 268 K to [Formula: see text] ~ 258 K, due to a weaker greenhouse effect. In other words, river-forming climates on early Mars were warm and wet first, and cold and wet later. Unexpectedly, analysis of the greenhouse effect within our ensemble of global climate model simulations suggests that this shift was primarily driven by waning non-CO2 radiative forcing, and not changes in CO2 radiative forcing.

5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903256

RESUMO

Despite receiving just 30% of the Earth's present-day insolation, Mars had water lakes and rivers early in the planet's history, due to an unknown warming mechanism. A possible explanation for the >102-y-long lake-forming climates is warming by water ice clouds. However, this suggested cloud greenhouse explanation has proved difficult to replicate and has been argued to require unrealistically optically thick clouds at high altitudes. Here, we use a global climate model (GCM) to show that a cloud greenhouse can warm a Mars-like planet to global average annual-mean temperature ([Formula: see text]) ∼265 K, which is warm enough for low-latitude lakes, and stay warm for centuries or longer, but only if the planet has spatially patchy surface water sources. Warm, stable climates involve surface ice (and low clouds) only at locations much colder than the average surface temperature. At locations horizontally distant from these surface cold traps, clouds are found only at high altitudes, which maximizes warming. Radiatively significant clouds persist because ice particles sublimate as they fall, moistening the subcloud layer so that modest updrafts can sustain relatively large amounts of cloud. The resulting climates are arid (area-averaged surface relative humidity ∼25%). In a warm, arid climate, lakes could be fed by groundwater upwelling, or by melting of ice following a cold-to-warm transition. Our results are consistent with the warm and arid climate favored by interpretation of geologic data, and support the cloud greenhouse hypothesis.

6.
Proc Natl Acad Sci U S A ; 117(31): 18264-18271, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694204

RESUMO

The next step on the path toward another Earth is to find atmospheres similar to those of Earth and Venus-high-molecular-weight (secondary) atmospheres-on rocky exoplanets. Many rocky exoplanets are born with thick (>10 kbar) H2-dominated atmospheres but subsequently lose their H2; this process has no known Solar System analog. We study the consequences of early loss of a thick H2 atmosphere for subsequent occurrence of a high-molecular-weight atmosphere using a simple model of atmosphere evolution (including atmosphere loss to space, magma ocean crystallization, and volcanic outgassing). We also calculate atmosphere survival for rocky worlds that start with no H2 Our results imply that most rocky exoplanets orbiting closer to their star than the habitable zone that were formed with thick H2-dominated atmospheres lack high-molecular-weight atmospheres today. During early magma ocean crystallization, high-molecular-weight species usually do not form long-lived high-molecular-weight atmospheres; instead, they are lost to space alongside H2 This early volatile depletion also makes it more difficult for later volcanic outgassing to revive the atmosphere. However, atmospheres should persist on worlds that start with abundant volatiles (for example, water worlds). Our results imply that in order to find high-molecular-weight atmospheres on warm exoplanets orbiting M-stars, we should target worlds that formed H2-poor, that have anomalously large radii, or that orbit less active stars.

7.
Sci Adv ; 5(3): eaav7710, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30944863

RESUMO

Mars is dry today, but numerous precipitation-fed paleo-rivers are found across the planet's surface. These rivers' existence is a challenge to models of planetary climate evolution. We report results indicating that, for a given catchment area, rivers on Mars were wider than rivers on Earth today. We use the scale (width and wavelength) of Mars paleo-rivers as a proxy for past runoff production. Using multiple methods, we infer that intense runoff production of >(3-20) kg/m2 per day persisted until <3 billion years (Ga) ago and probably <1 Ga ago, and was globally distributed. Therefore, the intense runoff production inferred from the results of the Mars Science Laboratory rover was not a short-lived or local anomaly. Rather, precipitation-fed runoff production was globally distributed, was intense, and persisted intermittently over >1 Ga. Our improved history of Mars' river runoff places new constraints on the unknown mechanism that caused wet climates on Mars.

9.
Sci Adv ; 4(6): eaar6692, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29963627

RESUMO

Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role.

10.
Proc Natl Acad Sci U S A ; 113(15): 3972-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035954

RESUMO

Spacecraft observations suggest that the plumes of Saturn's moon Enceladus draw water from a subsurface ocean, but the sustainability of conduits linking ocean and surface is not understood. Observations show eruptions from "tiger stripe" fissures that are sustained (although tidally modulated) throughout each orbit, and since the 2005 discovery of the plumes. Peak plume flux lags peak tidal extension by ∼1 rad, suggestive of resonance. Here, we show that a model of the tiger stripes as tidally flexed slots that puncture the ice shell can simultaneously explain the persistence of the eruptions through the tidal cycle, the phase lag, and the total power output of the tiger stripe terrain, while suggesting that eruptions are maintained over geological timescales. The delay associated with flushing and refilling of O(1)-m-wide slots with ocean water causes erupted flux to lag tidal forcing and helps to buttress slots against closure, while tidally pumped in-slot flow leads to heating and mechanical disruption that staves off slot freezeout. Much narrower and much wider slots cannot be sustained. In the presence of long-lived slots, the 10(6)-y average power output of the tiger stripes is buffered by a feedback between ice melt-back and subsidence to O(10(10)) W, which is similar to observed power output, suggesting long-term stability. Turbulent dissipation makes testable predictions for the final flybys of Enceladus by Cassini Our model shows how open connections to an ocean can be reconciled with, and sustain, long-lived eruptions. Turbulent dissipation in long-lived slots helps maintain the ocean against freezing, maintains access by future Enceladus missions to ocean materials, and is plausibly the major energy source for tiger stripe activity.

11.
Science ; 322(5906): 1345-8, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19008414

RESUMO

Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 mum is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 mum and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 mum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA