Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Vet Sci ; 11: 1358995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450025

RESUMO

Exploring the risk factors of avian influenza (AI) occurrence helps us to monitor and control the disease. Since late 2020, the number of avian influenza outbreaks in domestic and wild birds has increased in most European countries, including Denmark. This study was conducted to identify potential risk factors for wild birds and poultry during the epidemic in 2020/2021 in Denmark. Using Danish AI surveillance data of actively surveyed poultry and passively surveyed wild birds from June 2020 to May 2021, we calculated geographical attributes for bird locations and assessed the potential risk factors of AI detections using logistic regression analyses. 4% of actively surveyed poultry and 39% of passively surveyed wild birds were detected with AI circulating or ongoing at the time. Of these, 10 and 99% tested positive for the H5/H7 AI subtypes, respectively. Our analyses did not find any statistically significant risk factors for actively surveyed poultry within the dataset. For passively surveyed wild birds, bird species belonging to the Anseriformes order had a higher risk of being AI virus positive than five other taxonomic bird orders, and Galliformes were of higher risk than two other taxonomic bird orders. Besides, every 1 km increase in the distance to wetlands was associated with a 5.18% decrease in the risk of being AI positive (OR (odds ratio) 0.95, 95% CI 0.91, 0.99), when all other variables were kept constant. Overall, bird orders and distance to wetlands were associated with the occurrence of AI. The findings may provide targets for surveillance strategies using limited resources and assist in risk-based surveillance during epidemics.

2.
Viruses ; 15(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376554

RESUMO

A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Fazendas , Lituânia , Biosseguridade , Sus scrofa , Surtos de Doenças/veterinária , Insetos
3.
Sci Rep ; 13(1): 7685, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169798

RESUMO

Incidence of tick-borne encephalitis (TBE) has increased during the last years in Scandinavia, but the underlying mechanism is not understood. TBE human case data reported between 2010 and 2021 were aggregated into postal codes within Örebro County, south-central Sweden, along with tick abundance and environmental data to analyse spatial patterns and identify drivers of TBE. We identified a substantial and continuing increase of TBE incidence in Örebro County during the study period. Spatial cluster analyses showed significant hotspots (higher number of cases than expected) in the southern and northern parts of Örebro County, whereas a cold spot (lower number of cases than expected) was found in the central part comprising Örebro municipality. Generalised linear models showed that the risk of acquiring TBE increased by 12.5% and 72.3% for every percent increase in relative humidity and proportion of wetland forest, respectively, whereas the risk decreased by 52.8% for every degree Celsius increase in annual temperature range. However, models had relatively low goodness of fit (R2 < 0.27). Results suggest that TBE in Örebro County is spatially clustered, however variables used in this study, i.e., climatic variables, forest cover, water, tick abundance, sheep as indicator species, alone do not explain this pattern.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Humanos , Animais , Ovinos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Suécia/epidemiologia , Países Escandinavos e Nórdicos , Incidência
4.
Zoonoses Public Health ; 70(6): 473-484, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248739

RESUMO

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Prevalência , Estações do Ano , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Países Escandinavos e Nórdicos/epidemiologia , Conceitos Meteorológicos , Ninfa
5.
Insects ; 14(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36975978

RESUMO

Mosquitoes of the genus Culex are important vectors of a variety of arthropod-borne viral infections. In most of the northern parts of the USA, Cx. pipiens/restuans is the predominant representative of this genus. As vectors, they play a key role in the spreading of arboviruses and thus, knowledge of the population dynamic of mosquitoes is important to understand the disease ecology of these viruses. As poikilotherm animals, the vital rates of mosquitoes are highly dependent on ambient temperature, and also on precipitation. We present a compartmental model for the population dynamics of Cx. pipiens/restuans. The model is driven by temperature, precipitation, and daytime length (which can be calculated from the geographic latitude). For model evaluation, we used long-term mosquito capture data, which were averaged from multiple sites in Cook County, Illinois. The model fitted the observation data and was able to reproduce between-year differences in the abundance of the Cx. pipiens/restuans mosquitoes, as well as the different seasonal trends. Using this model, we evaluated the effectiveness of targeting different vital rates for mosquito control strategies. The final model is able to reproduce the weekly mean Cx. pipiens/restuans abundance for Cook County with a high accuracy, and over a long time period of 20 years.

6.
Transbound Emerg Dis ; 69(2): 706-719, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33600073

RESUMO

Avian influenza (AI) is a contagious disease of birds with zoonotic potential. AI virus (AIV) can infect most bird species, but clinical signs and mortality vary. Assessing the distribution and factors affecting AI presence can direct targeted surveillance to areas at risk of disease outbreaks, or help identify disease hotspots or areas with inadequate surveillance. Using virus surveillance data from passive and active AIV wild bird surveillance, 2006-2020, we investigated the association between the presence of AIV and a range of landscape factors and game bird release. Furthermore, we assessed potential bias in the passive AIV surveillance data submitted by the public, via factors related to public accessibility. Lastly, we tested the AIV data for possible hot- and cold spots within Denmark. The passive surveillance data was biased regarding accessibility to areas (distance to roads, cities and coast) compared to random locations within Denmark. For both the passive and active AIV surveillance data, we found significant (p < .01) associations with variables related to coast, wetlands and cities, but not game bird release. We used these variables to predict the risk of AIV presence throughout Denmark, and found high-risk areas concentrated along the coast and fjords. For both passive and active surveillance data, low-risk clusters were mainly seen in Jutland and northern Zealand, whereas high-risk clusters were found in Jutland, Zealand, Funen and the southern Isles such as Lolland and Falster. Our results suggest that landscape affects AIV presence, as coastal areas and wetlands attract waterfowl and migrating birds and therefore might increase the potential for AIV transmission. Our findings have enabled us to create risk maps of AIV presence in wild birds and pinpoint high-risk clusters within Denmark. This will aid targeted surveillance efforts within Denmark and potentially aid in planning the location of future poultry farms.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Dinamarca/epidemiologia
7.
Front Vet Sci ; 9: 1046263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686172

RESUMO

Introduction: Mosquitoes either biologically or mechanically transmit various vector-borne pathogens affecting pigs. Mosquito species display a wide variety of host preference, as well as host attraction and behaviours. Mosquito species attraction rates to- and feeding rates on pigs or other potential hosts, as well as the seasonal abundance of the mosquito species affects their pathogen transmission potential. Methods: We caught mosquitoes in experimental cages containing pigs situated in Romanian backyard farms. The host species of blood meals were identified with PCR and sequencing. Results: High feeding preferences for pigs were observed in Aedes vexans (90%), Anopheles maculipennis (80%) and Culiseta annulata (72.7%). However, due to a high abundance in the traps, Culex pipiens/torrentium were responsible for 37.9% of all mosquito bites on pigs in the Romanian backyards, despite low feeding rates on pigs in the cages (18.6%). We also found that other predominantly ornithophilic mosquito species, as well as mosquitoes that are already carrying a blood meal from a different (mammalian) host, were attracted to backyard pigs or their enclosure. Discussion: These results indicate that viraemic blood carrying, for instance, African swine fever virus, West-Nile virus or Japanese encephalitis virus could be introduced to these backyard pig farms and therefore cause an infection, either through subsequent feeding, via ingestion by the pig or by environmental contamination.

8.
Int J Parasitol Parasites Wildl ; 16: 175-182, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34660192

RESUMO

Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.

9.
Sci Rep ; 11(1): 3527, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574465

RESUMO

We caught stable- and house flies on a Danish LA-MRSA positive pig farm. Stable- and house flies were housed together and culled over time to test for the presence of live LA-MRSA bacteria at 24 h intervals to establish the length of time for which LA-MRSA can persist on flies. On average, 7% of stable flies and 27% of house flies tested positive for LA-MRSA immediately upon removal from the farm. LA-MRSA prevalence decreased over time and estimates based on a Kaplan-Meier time-to-event analysis indicated that the probability of a stable- or house fly testing positive for LA-MRSA was 5.4% and 7.8% after 24 h, 3.5% and 4.3% after 48 h, 3.1% and 2.2% after 72 h and 0.4% and 0% after 96 h of removal from the pig farm, respectively. Simultaneously, we found that caged cultivated house flies became carriers of LA-MRSA, without direct contact with pigs, in the same proportions as wild flies inside the farm. We provide distance distributions of Danish pig farms and residential addresses as well as the calculated maximum dispersal potentials of stable- and house flies, which suggest that there is a potential for stable- and house flies dispersing live LA-MRSA bacteria into the surrounding environment of a pig farm. This potential should therefore be considered when modelling the spread between farms or the risk posed to humans living in close proximity to LA-MRSA pig farm sources.


Assuntos
Moscas Domésticas/microbiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Muscidae/microbiologia , Infecções Estafilocócicas/microbiologia , Animais , Dinamarca , Fazendas , Moscas Domésticas/patogenicidade , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Muscidae/patogenicidade , Infecções Estafilocócicas/transmissão , Infecções Estafilocócicas/veterinária , Suínos/microbiologia
10.
Sci Rep ; 10(1): 19376, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168841

RESUMO

Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.


Assuntos
Ixodes/fisiologia , Modelos Biológicos , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Humanos , Prevalência , Países Escandinavos e Nórdicos/epidemiologia
12.
Sci Data ; 7(1): 238, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678090

RESUMO

Ticks carry pathogens that can cause disease in both animals and humans, and there is a need to monitor the distribution and abundance of ticks and the pathogens they carry to pinpoint potential high risk areas for tick-borne disease transmission. In a joint Scandinavian study, we measured Ixodes ricinus instar abundance at 159 sites in southern Scandinavia in August-September, 2016, and collected 29,440 tick nymphs at 50 of these sites. We additionally measured abundance at 30 sites in August-September, 2017. We tested the 29,440 tick nymphs in pools of 10 in a Fluidigm real-time PCR chip to screen for 17 different tick-associated pathogens, 2 pathogen groups and 3 tick species. We present data on the geolocation, habitat type and instar abundance of the surveyed sites, as well as presence/absence of each pathogen in all analysed pools from the 50 collection sites and individual prevalence for each site. These data can be used alone or in combination with other data for predictive modelling and mapping of high-risk areas.


Assuntos
Distribuição Animal , Ixodes/microbiologia , Animais , Ecossistema , Ninfa/microbiologia , Países Escandinavos e Nórdicos
13.
Sci Rep ; 10(1): 7796, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385297

RESUMO

In Europe, Lyme neuroborreliosis (LNB) is the most severe manifestation of Lyme borreliosis and has recently been added to the communicable disease surveillance list for EU/EEA by the European Commission. In Northern Europe, LNB is primarily caused by the spirochete Borrelia garinii and transmitted by the tick Ixodes ricinus. This Danish observational epidemiologic case-control study includes every identified LNB patient (n = 401) on Funen, Denmark, from 1995-2014. We display spatial and temporal LNB incidence variation, seasonal distribution of cases and local spatial case clustering. Seasonal patterns show LNB symptom-onset peaking in July and a significant seasonal difference in number of cases (p < 0.01). We found no significant change in seasonality patterns over time when dividing the study period into 5-year intervals. We identified a significant local geographical hot-spot of cases with a relative risk of 2.44 (p = 0.013). Analysis revealed a significantly shorter distance to nearest forest for cases compared with controls (p < 0.001). We present a novel map of the focal geographical distribution of LNB cases in a high endemic borreliosis area. Continued studies of case clustering in the epidemiology of LNB are of key importance in guiding intervention strategies.


Assuntos
Borrelia burgdorferi , Neuroborreliose de Lyme/epidemiologia , Neuroborreliose de Lyme/microbiologia , Análise por Conglomerados , Dinamarca/epidemiologia , Geografia Médica , História do Século XXI , Humanos , Incidência , Neuroborreliose de Lyme/história , Vigilância em Saúde Pública , Estações do Ano , Análise Espaço-Temporal
14.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295627

RESUMO

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Assuntos
Ceratopogonidae , Aprendizado de Máquina , Dinâmica Populacional , Animais , Ceratopogonidae/virologia , Clima , Ecossistema , Europa (Continente) , Fazendas , Insetos Vetores/virologia , Modelos Teóricos , Estações do Ano
15.
Sci Rep ; 9(1): 13466, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530858

RESUMO

We used a mechanistic transmission model to estimate the number of infectious bites (IBs) generated per bluetongue virus (BTV) infected host (cattle) using estimated hourly microclimatic temperatures at 22,004 Danish cattle farms for the period 2000-2016, and Culicoides midge abundance based on 1,453 light-trap collections during 2007-2016. We used a range of published estimates of the duration of the hosts' infectious period and equations for the relationship between temperature and four key transmission parameters: extrinsic incubation period, daily vector survival rate, daily vector biting rate and host-to-vector transmission rate resulting in 147,456 combinations of daily IBs. More than 82% combinations of the parameter values predicted > 1 IBs per host. The mean IBs (10-90th percentiles) for BTV per infectious host were 59 (0-73) during the transmission period. We estimated a maximum of 14,954 IBs per infectious host at some farms, while a best-case scenario suggested transmission was never possible at some farms. The use of different equations for the vector survival rate and host-to-vector transmission rates resulted in large uncertainty in the predictions. If BTV is introduced in Denmark, local transmission is very likely to occur. Vectors infected as late as mid-September (early autumn) can successfully transmit BTV to a new host until mid-November (late autumn).


Assuntos
Bluetongue/transmissão , Ceratopogonidae/virologia , Insetos Vetores , Modelos Biológicos , Animais , Bovinos , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Dinamarca , Ecossistema , Fazendas , Mordeduras e Picadas de Insetos , Insetos Vetores/virologia , Estações do Ano , Temperatura , Tempo (Meteorologia)
16.
Parasit Vectors ; 12(1): 338, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288866

RESUMO

The taiga tick, Ixodes persulcatus, has previously been limited to eastern Europe and northern Asia, but recently its range has expanded to Finland and northern Sweden. The species is of medical importance, as it, along with a string of other pathogens, may carry the Siberian and Far Eastern subtypes of tick-borne encephalitis virus. These subtypes appear to cause more severe disease, with higher fatality rates than the central European subtype. Until recently, the meadow tick, Dermacentor reticulatus, has been absent from Scandinavia, but has now been detected in Denmark, Norway and Sweden. Dermacentor reticulatus carries, along with other pathogens, Babesia canis and Rickettsia raoultii. Babesia canis causes severe and often fatal canine babesiosis, and R. raoultii may cause disease in humans. We collected 600 tick nymphs from each of 50 randomly selected sites in Denmark, southern Norway and south-eastern Sweden in August-September 2016. We tested pools of 10 nymphs in a Fluidigm real time PCR chip to screen for I. persulcatus and D. reticulatus, as well as tick-borne pathogens. Of all the 30,000 nymphs tested, none were I. persulcatus or D. reticulatus. Our results suggest that I. persulcatus is still limited to the northern parts of Sweden, and have not expanded into southern parts of Scandinavia. According to literature reports and supported by our screening results, D. reticulatus may yet only be an occasional guest in Scandinavia without established populations.


Assuntos
Dermacentor/fisiologia , Ixodes/fisiologia , Distribuição Animal , Animais , Vetores Artrópodes/microbiologia , Vetores Artrópodes/parasitologia , Babesiose/prevenção & controle , Dermacentor/microbiologia , Dermacentor/parasitologia , Cães , Encefalite Transmitida por Carrapatos/prevenção & controle , Monitoramento Epidemiológico , Pradaria , Ixodes/microbiologia , Ixodes/parasitologia , Noruega/epidemiologia , Ninfa/virologia , Países Escandinavos e Nórdicos/epidemiologia , Suécia/epidemiologia , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/prevenção & controle
17.
Ticks Tick Borne Dis ; 10(5): 1060-1065, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176664

RESUMO

During its lifecycle, the generalist Ixodes ricinus takes up three blood meals from a wide selection of vertebrate hosts, some of which are reservoirs for multiple vector-associated pathogens. Since I. ricinus also readily bites humans, pets, and livestock, these hosts are at risk of becoming infected with more than one tick-borne pathogen. Multiple tick-borne infections are a public health concern, since they may increase diversity and duration of symptoms and complicate differential diagnosis and therapy. We used an existing Fluidigm real-time PCR chip to identify the minimum risk of exposure to infected/co-infected ticks in Denmark. We screened 509 nymphs and 504 adult female I. ricinus ticks for 17 different vector-associated pathogenic agents. The questing ticks were collected by flagging during the same season in two consecutive years in Grib forest in the capital region of Copenhagen. Overall, 19.1% of the nymphs and 52.2% of the adult female ticks harbored at least one zoonotic pathogen. The main agents were Borrelia spp., Anaplasma phagocytophilum and Rickettsia helvetica, while Candidatus Neoehrlichia mikurensis and Babesia venatorum both were present in less than 1% of the ticks. In 3.5% of the nymphs and 12.3% of adults we found more than one tick-borne pathogen. Of these, 15% were potentially triple or quadruple infections. Whereas mixed infections with Borrelia were equally distributed among both life stages, the adult ticks hosted 84.5% of the co-infections with different species of tick-borne pathogens, chiefly involving Borrelia species in combination with either R. helvetica or A. phagocytophilum. Statistical analyses indicated non-random co-occurrence of Borrelia spielmanii/Borrelia garinii in both life stages and B. garinii/Borrelia afzelii and B. garinii/Borrelia valaisiana in the nymphs. Although the overall prevalence of ticks hosting more than one infection only constituted 7.9% at the particular site investigated in this study, our results still underline that co-infections should be considered in diagnosis and treatment of tick-borne diseases in northern Europe.


Assuntos
Anaplasma phagocytophilum/isolamento & purificação , Babesia/isolamento & purificação , Borrelia/isolamento & purificação , Ixodes/microbiologia , Ixodes/parasitologia , Rickettsia/isolamento & purificação , Animais , Dinamarca , Feminino , Florestas , Ixodes/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/parasitologia
18.
Prev Vet Med ; 167: 68-79, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31027724

RESUMO

African swine fever (ASF) is caused by ASF virus (ASFV) and is currently circulating in the eastern part of Europe posing a serious risk regarding transmission to western European countries. Wild boar is a main driver of the transmission and persistence of ASFV in the endemic infected countries in Europe. Some European countries free from ASF, such as Denmark and the Netherlands, have limited population sizes of wild boar, but have large swine productions. In these countries, the patterns of transmission and persistence of ASFV in the existing wild boar population, in case of introduction of ASFV, are unknown. It is important to get a better understanding of ASFV in these wild boar populations, in order to better manage the existing wild boar population and thereby minimize the risk of virus introduction and transmission to domestic pigs, in case of an ASFV incursion. We created an agent-based spatio-temporal model and simulated the transmission of ASFV within Danish wild boar populations, using actual landscape data. The model was run with 50 and 100 wild boar groups used as initial population sizes, respectively, either distributed across the southern part of the mainland (Jutland) or across both the southern and middle parts of Jutland, where wild boar groups are believed to exist. At first, the model was run without ASFV for 25 years to assess wild boar population dynamics in both regions. Thereafter, ASFV was added to the model 1 year after initiation and run for up to another 4 years. The model predicted that wild boar populations may increase drastically over the next 25 years, if wild boar groups were distributed across both southern and middle Jutland and no mitigation actions were taken, while the population sizes will be restricted, if groups were distributed only across the southern part of Jutland. The density of the population is an important factor affecting the transmission and persistency of the disease. Model results indicated that ASF epidemics in the simulated populations would generally persist for few months. However, due to the high stochasticity of the process, in certain situations the epidemics may last for more than one year, posing a serious risk of ASFV introduction to domestic pigs.


Assuntos
Febre Suína Africana/transmissão , Sus scrofa/virologia , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana , Animais , Simulação por Computador , Dinamarca/epidemiologia , Surtos de Doenças/veterinária , Modelos Biológicos , Suínos
19.
Euro Surveill ; 24(9)2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30862329

RESUMO

BackgroundTick-borne diseases have become increasingly common in recent decades and present a health problem in many parts of Europe. Control and prevention of these diseases require a better understanding of vector distribution.AimOur aim was to create a model able to predict the distribution of Ixodes ricinus nymphs in southern Scandinavia and to assess how this relates to risk of human exposure.MethodsWe measured the presence of I. ricinus tick nymphs at 159 stratified random lowland forest and meadow sites in Denmark, Norway and Sweden by dragging 400 m transects from August to September 2016, representing a total distance of 63.6 km. Using climate and remote sensing environmental data and boosted regression tree modelling, we predicted the overall spatial distribution of I. ricinus nymphs in Scandinavia. To assess the potential public health impact, we combined the predicted tick distribution with human density maps to determine the proportion of people at risk.ResultsOur model predicted the spatial distribution of I. ricinus nymphs with a sensitivity of 91% and a specificity of 60%. Temperature was one of the main drivers in the model followed by vegetation cover. Nymphs were restricted to only 17.5% of the modelled area but, respectively, 73.5%, 67.1% and 78.8% of the human populations lived within 5 km of these areas in Denmark, Norway and Sweden.ConclusionThe model suggests that increasing temperatures in the future may expand tick distribution geographically in northern Europe, but this may only affect a small additional proportion of the human population.


Assuntos
Clima , Encefalite Transmitida por Carrapatos/epidemiologia , Ixodes/crescimento & desenvolvimento , Doença de Lyme/epidemiologia , Filogeografia , Infestações por Carrapato/epidemiologia , Animais , Dinamarca/epidemiologia , Meio Ambiente , Exposição Ambiental , Geografia , Humanos , Ixodes/fisiologia , Modelos Biológicos , Noruega/epidemiologia , Ninfa , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto , Países Escandinavos e Nórdicos , Estações do Ano , Suécia/epidemiologia
20.
Environ Sci Pollut Res Int ; 26(6): 6133-6140, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617892

RESUMO

The extensive use of anticoagulant rodenticides (ARs) results in widespread unintentional exposure of non-target rodents and secondary poisoning of predators despite regulatory measures to manage and reduce exposure risk. To elucidate on the potential vectoring of ARs into surrounding habitats by non-target small mammals, we determined bromadiolone prevalence and concentrations in rodents and shrews near bait boxes during an experimental application of the poison for 2 weeks. Overall, bromadiolone was detected in 12.6% of all small rodents and insectivores. Less than 20 m from bait boxes, 48.6% of small mammals had detectable levels of bromadiolone. The prevalence of poisoned small mammals decreased with distance to bait boxes, but bromadiolone concentration in the rodenticide positive individuals did not. Poisoned small mammals were trapped up to 89 m from bait boxes. Bromadiolone concentrations in yellow-necked mice (Apodemus flavicollis) were higher than concentrations in bank vole (Myodes glareolus), field vole (Microtus agrestis), harvest mouse (Micromys minutus), and common shrew (Sorex araneus). Our field trials documents that chemical rodent control results in widespread exposure of non-target small mammals and that AR poisoned small mammals disperse away from bating sites to become available to predators and scavengers in large areas of the landscape. The results suggest that the unintentional secondary exposure of predators and scavengers is an unavoidable consequence of chemical rodent control outside buildings and infrastructures.


Assuntos
4-Hidroxicumarinas/análise , Arvicolinae , Exposição Ambiental/análise , Murinae , Rodenticidas/análise , 4-Hidroxicumarinas/toxicidade , Animais , Anticoagulantes/análise , Anticoagulantes/toxicidade , Dinamarca , Exposição Ambiental/estatística & dados numéricos , Comportamento Predatório , Prevalência , Controle de Roedores/métodos , Roedores , Rodenticidas/toxicidade , Musaranhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA