Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mol Cell ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908370

RESUMO

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.

2.
ACS Cent Sci ; 9(3): 393-404, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968546

RESUMO

The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.

3.
J Am Chem Soc ; 144(49): 22493-22504, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36413626

RESUMO

Pancreatic cancer has the lowest survival rate of all common cancers due to late diagnosis and limited treatment options. Serine hydrolases are known to mediate cancer progression and metastasis through initiation of signaling cascades and cleavage of extracellular matrix proteins, and the kallikrein-related peptidase (KLK) family of secreted serine proteases have emerging roles in pancreatic ductal adenocarcinoma (PDAC). However, the lack of reliable activity-based probes (ABPs) to profile KLK activity has hindered progress in validation of these enzymes as potential targets or biomarkers. Here, we developed potent and selective ABPs for KLK6 by using a positional scanning combinatorial substrate library and characterized their binding mode and interactions by X-ray crystallography. The optimized KLK6 probe IMP-2352 (kobs/I = 11,000 M-1 s-1) enabled selective detection of KLK6 activity in a variety of PDAC cell lines, and we observed that KLK6 inhibition reduced the invasiveness of PDAC cells that secrete active KLK6. KLK6 inhibitors were combined with N-terminomics to identify potential secreted protein substrates of KLK6 in PDAC cells, providing insights into KLK6-mediated invasion pathways. These novel KLK6 ABPs offer a toolset to validate KLK6 and associated signaling partners as targets or biomarkers across a range of diseases.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Calicreínas/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas
4.
Cell Rep Med ; 3(10): 100781, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36240755

RESUMO

Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Estudos Clínicos como Assunto , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunidade , SARS-CoV-2
5.
Nat Commun ; 13(1): 6237, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284108

RESUMO

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.


Assuntos
Proteoma , Proteômica , Camundongos , Animais , Proteômica/métodos , Glicoproteínas/metabolismo , Açúcares , Nucleotídeos
7.
Sci Transl Med ; 14(655): eabn3715, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895836

RESUMO

Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Coronavirus Humano OC43 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Coronavirus Humano OC43/imunologia , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
8.
ACS Chem Neurosci ; 13(13): 2060-2077, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731924

RESUMO

The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 µM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 µM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.


Assuntos
Cristalografia por Raios X
9.
J Med Chem ; 65(10): 7212-7230, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35536179

RESUMO

Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.


Assuntos
Inibidores Enzimáticos , Esterases , Encéfalo/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Via de Sinalização Wnt
13.
Cancer Cell ; 40(2): 114-116, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34968417
14.
Biochem J ; 478(13): 2405-2423, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198322

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Assuntos
Antivirais/química , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , RNA Helicases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Chlorocebus aethiops , Ensaios Enzimáticos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , RNA Helicases/metabolismo , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Suramina/farmacologia , Células Vero , Proteínas não Estruturais Virais/metabolismo
15.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323691

RESUMO

Background: The degree of heterotypic immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is a major determinant of the spread of emerging variants and the success of vaccination campaigns, but remains incompletely understood. Methods: We examined the immunogenicity of SARS-CoV-2 variant B.1.1.7 (Alpha) that arose in the United Kingdom and spread globally. We determined titres of spike glycoprotein-binding antibodies and authentic virus neutralising antibodies induced by B.1.1.7 infection to infer homotypic and heterotypic immunity. Results: Antibodies elicited by B.1.1.7 infection exhibited significantly reduced recognition and neutralisation of parental strains or of the South Africa variant B.1.351 (Beta) than of the infecting variant. The drop in cross-reactivity was significantly more pronounced following B.1.1.7 than parental strain infection. Conclusions: The results indicate that heterotypic immunity induced by SARS-CoV-2 variants is asymmetric. Funding: This work was supported by the Francis Crick Institute and the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/epidemiologia , Reações Cruzadas , Humanos , Pais , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus , Reino Unido/epidemiologia
16.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34106209

RESUMO

The mechanisms regulating the disassembly of branched actin networks formed by the Arp2/3 complex still remain to be fully elucidated. In addition, the impact of Arp3 isoforms on the properties of Arp2/3 are also unexplored. We now demonstrate that Arp3 and Arp3B isocomplexes promote actin assembly equally efficiently but generate branched actin networks with different disassembly rates. Arp3B dissociates significantly faster than Arp3 from the network, and its depletion increases actin stability. This difference is due to the oxidation of Arp3B, but not Arp3, by the methionine monooxygenase MICAL2, which is recruited to the actin network by coronin 1C. Substitution of Arp3B Met293 by threonine, the corresponding residue in Arp3, increases actin network stability. Conversely, replacing Arp3 Thr293 with glutamine to mimic Met oxidation promotes disassembly. The ability of MICAL2 to enhance network disassembly also depends on cortactin. Our observations demonstrate that coronin 1C, cortactin, and MICAL2 act together to promote disassembly of branched actin networks by oxidizing Arp3B-containing Arp2/3 complexes.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína 3 Relacionada a Actina/genética , Cortactina/genética , Cortactina/metabolismo , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Microscopia de Fluorescência , Oxirredução , Oxirredutases/genética , Vaccinia virus/genética , Vaccinia virus/metabolismo
17.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888467

RESUMO

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.


Assuntos
COVID-19/imunologia , Heme/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Bilirrubina/metabolismo , Biliverdina/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos , Humanos , Soros Imunes , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
18.
ACS Chem Biol ; 16(10): 1961-1967, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33835779

RESUMO

Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.


Assuntos
Galactosamina/análogos & derivados , Galactosamina/metabolismo , Galactosiltransferases/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Azidas/química , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Engenharia Metabólica/métodos , Camundongos , Sondas Moleculares/química , Oligossacarídeos/biossíntese , Polissacarídeos/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Açúcares de Uridina Difosfato/metabolismo
19.
J Mol Biol ; 433(13): 166964, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33781758

RESUMO

Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.


Assuntos
Algoritmos , Estabilidade Proteica , Animais , Escherichia coli/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Solubilidade , Temperatura , Peixe-Zebra
20.
medRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33532784

RESUMO

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that the virus co-opts the haem metabolite for the evasion of humoral immunity via allosteric shielding of a sensitive epitope and demonstrate the remarkable structural plasticity of the NTD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA