Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276403

RESUMO

Nowadays, the Industry 4.0 concept and the Industrial Internet of Things (IIoT) are considered essential for the implementation of automated manufacturing processes across various industrial settings. In this regard, wireless sensor networks (WSN) are crucial due to their inherent mobility, easy deployment and maintenance, scalability, and low power consumption, among other benefits. In this context, the presented paper proposes an optimized and low-cost WSN based on ZigBee communication technology for the monitoring of a real manufacturing facility. The company designs and manufactures solar protection curtains and aims to integrate the deployed WSN into the Enterprise Resource Planning (ERP) system in order to optimize their production processes and enhance production efficiency and cost estimation capabilities. To achieve this, radio propagation measurements and 3D ray launching simulations were conducted to characterize the wireless channel behavior and facilitate the development of an optimized WSN system that can operate in the complex industrial environment presented and validated through on-site wireless channel measurements, as well as interference analysis. Then, a low-cost WSN was implemented and deployed to acquire real-time data from different machinery and workstations, which will be integrated into the ERP system. Multiple data streams have been collected and processed from the shop floor of the factory by means of the prototype wireless nodes implemented. This integration will enable the company to optimize its production processes, fabricate products more efficiently, and enhance its cost estimation capabilities. Moreover, the proposed system provides a scalable platform, enabling the integration of new sensors as well as information processing capabilities.

2.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616644

RESUMO

The practice of sports has been steadily evolving, taking advantage of different technological tools to improve different aspects such as individual/collective training, support in match development or enhancement of audience experience. In this work, an in-house implemented monitoring system for golf training and competition is developed, composed of a set of distributed end devices, gateways and routers, connected to a web-based platform for data analysis, extraction and visualization. Extensive wireless channel analysis has been performed, by means of deterministic 3D radio channel estimations and radio frequency measurements, to provide coverage/capacity estimations for the specific use case of golf courses. The monitoring system has been fully designed considering communication as well as energy constraints, including wireless power transfer (WPT) capabilities in order to provide flexible node deployment. System validation has been performed in a real golf course, validating end-to-end connectivity and information handling to improve overall user experience.


Assuntos
Golfe , Esportes , Redes de Comunicação de Computadores , Tecnologia sem Fio , Monitorização Fisiológica
3.
Sensors (Basel) ; 19(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652740

RESUMO

In this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.

4.
Sensors (Basel) ; 19(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434324

RESUMO

The advent of the Internet of Things (IoT) has led to embedding wireless transceivers into a wide range of devices, in order to implement context-aware scenarios, in which a massive amount of transceivers is foreseen. In this framework, cost-effective electronic and Radio Frequency (RF) front-end integration is desirable, in order to enable straightforward inclusion of communication capabilities within objects and devices in general. In this work, flexible antenna prototypes, based on screen-printing techniques, with conductive inks on flexible low-cost plastic substrates is proposed. Different parameters such as substrate/ink characteristics are considered, as well as variations in fabrication process or substrate angular deflection in device performance. Simulation and measurement results are presented, as well as system validation results in a real test environment in wireless sensor network communications. The results show the feasibility of using screen-printing antenna elements on flexible low-cost substrates, which can be embedded in a wide array of IoT scenarios.

5.
Sensors (Basel) ; 18(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049959

RESUMO

In this contribution, a narrowband radio channel model is proposed for rural scenarios in which the radio link operates under near-ground conditions for application in wireless sensor networks dedicated to smart agriculture. The received power attenuation was measured for both transmitter and receiver antennas placed at two different heights above ground: 0.2 and 0.4 m. Three frequency ranges, proposed for future 5G-IoT use case in agriculture, were chosen: 868 MHz, 2.4 GHz and 5.8 GHz. Three ground coverings were tested in a rural scenario: soil, short and tall grass fields. The path loss was then estimated as dependent of the radio link range and a three-slope log-normal path loss model was tailored. Results are explained in terms of the first Fresnel zone obstruction. Commercial Zigbee sensor nodes operating at 2.4 GHz were used in a second experiment to estimate the link quality from the experimental Radio Signal Strength Indicator (RSSI) received values. Two sensor nodes were placed at the same elevation above ground as in the previous experiment, only for short grass field case. The Quality of Service performance was determined in terms of theoretical bit error rate achieved for different digital modulations-BPSK, 8PSK and 16QAM-concluding remarkable results for an obstructed radio link.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA