Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 720-732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554462

RESUMO

Carbon nanostructures derived from human hair biowaste are incorporated into polyvinylidene fluoride (PVDF) polymer to enhance the energy conversion performance of a triboelectric nanogenerator (TENG). The PVDF filled with activated carbon nanomaterial from human hair (AC-HH) exhibits improved surface charge density and photoinduced charge generation. These remarkable properties are attributed to the presence of graphene-like nanostructures in AC-HH, contributing to the augmented performance of PVDF@AC-HH TENG. The correlation of surface morphologies, surface charge potential, charge capacitance properties, and TENG electrical output of the PVDF composites at various AC-HH loading is studied and discussed. Applications of the PVDF@AC-HH TENG as a power source for micro/nanoelectronics and a movement sensor for detecting finger gestures are also demonstrated. The photoresponse property of the fabricated TENG is demonstrated and analyzed in-depth. The analysis indicates that the photoinduced charge carriers originate from the conductive reduced graphene oxide (rGO), contributing to the enhanced surface charge density of the PVDF composite film. This research introduces a novel approach to enhancing TENG performance through the utilization of carbon nanostructures derived from human biowaste. The findings of this work are crucial for the development of innovative energy-harvesting technology with multifunctionality, including power generation, motion detection, and photoresponse capabilities.


Assuntos
Carvão Vegetal , Polímeros de Fluorcarboneto , Nanoestruturas , Polivinil , Humanos , Capacitância Elétrica , Cabelo
2.
Biosens Bioelectron ; 254: 116218, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518559

RESUMO

Biodetection for non-invasive diagnostics of fluids, especially urine, remains a challenge to scientists due to low target concentrations. And biological complexes of the detection target may contain contaminants that also interfere with any assay. Dengue non-structural 1 protein (Dengue NS1) is an important biomarker for dengue hemorrhagic fever and dengue shock syndrome. Here, we developed an Au-decorated nanowire platform and applied it with a sandwich fluorophore-linked immunosorbent well plate assay (FLISA) to detect Dengue NS1 in urine. For the platform, we fabricated zinc oxide (ZnO) nanowires to provide a high surface area and then coated them with gold nanoparticles (ZnO/Au nanowires) to simply modify the Dengue NS1 antibody and enhance the fluorescence intensity. Our platform employs a sandwich FLISA that exhibits high sensitivity, specifically detecting Dengue NS1 with a limit of detection (LOD) of 1.35 pg/mL. This LOD was 4500-fold lower than the LOD of a commercially available kit for Dengue NS1 enzyme-linked immunosorbent assay. We believe that our ZnO/Au nanowire platform has the potential to revolutionize the field of non-invasive diagnostics for dengue.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Nanopartículas Metálicas , Nanofios , Óxido de Zinco , Humanos , Dengue/diagnóstico , Ouro , Sensibilidade e Especificidade , Proteínas não Estruturais Virais , Antígenos Virais , Ensaio de Imunoadsorção Enzimática , Imunoadsorventes , Anticorpos Antivirais
3.
Foods ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201187

RESUMO

An understanding regarding impacts of growth-related myopathies, i.e., white striping (WS) and wooden breast (WB), on the quality of dietary protein from cooked chicken breast is still limited. This study aimed at comparing protein content and in vitro protein digestion and estimating the in vitro protein digestibility corrected amino acid score (PDCAAS) of cooked chicken meat exhibiting different abnormality levels (i.e., normal, WS, and WS + WB). The results show that the WS + WB samples exhibited lower protein content, greater cooking loss, and greater lipid oxidation than those of normal samples (p < 0.05). No differences in protein carbonyls or the myofibril fragmentation index were found (p ≥ 0.05). Cooked samples were hydrolyzed in vitro using digestive enzyme mixtures that subsequently mimicked the enzymatic reactions in oral, gastric, and intestinal routes. The WS + WB samples exhibited greater values of free NH2 and degree of hydrolysis than the others at all digestion phases (p < 0.05), suggesting a greater proteolytic susceptibility. The in vitro PDCAAS of the WS + WB samples was greater than that of the other samples for pre-school children, school children, and adults (p < 0.05). Overall, the findings suggest that the cooked chicken breast with the WS + WB condition might provide greater protein digestibility and availability than WS and normal chicken breasts.

4.
ACS Sens ; 9(1): 206-216, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38114442

RESUMO

Though considerable progress has been achieved on gas molecule recognition by electronic nose (e-nose) comprised of nonselective (metal oxide) semiconductor chemiresistors, extracting adequate molecular features within short time (<1 s) remains a big obstacle, which hinders the emerging e-nose applications in lethal or explosive gas warning. Herein, by virtue of the ultrafast (∼20 µs) thermal relaxation time of self-heated WO3-based chemiresistors fabricated via oblique angle deposition, instead of external heating, self-heating temperature modulation has been proposed to generate sufficient electrical response features. Accurate discrimination of 12 gases (including 3 xylene isomers with the same function group and molecular weight) has been readily achieved within 0.5-1 s, which is one order faster than the state-of-the-art e-noses. A smart wireless e-nose, capable of instantaneously discriminating target gas in ambient air background, has been developed, paving the way for the practical applications of e-nose in the area of homeland security and public health.


Assuntos
Gases , Calefação , Temperatura , Eletrônica , Óxidos
5.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947691

RESUMO

Rapid and sensitive detection of Dengue virus remains a critical challenge in global public health. This study presents the development and evaluation of a Zinc Oxide nanorod (ZnO NR)-surface-integrated microfluidic platform for the early detection of Dengue virus. Utilizing a seed-assisted hydrothermal synthesis method, high-purity ZnO NRs were synthesized, characterized by their hexagonal wurtzite structure and a high surface-to-volume ratio, offering abundant binding sites for bioconjugation. Further, a comparative analysis demonstrated that the ZnO NR substrate outperformed traditional bare glass substrates in functionalization efficiency with 4G2 monoclonal antibody (mAb). Subsequent optimization of the functionalization process identified 4% (3-Glycidyloxypropyl)trimethoxysilane (GPTMS) as the most effective surface modifier. The integration of this substrate within a herringbone-structured microfluidic platform resulted in a robust device for immunofluorescence detection of DENV-3. The limit of detection (LOD) for DENV-3 was observed to be as low as 3.1 × 10-4 ng/mL, highlighting the remarkable sensitivity of the ZnO NR-integrated microfluidic device. This study emphasizes the potential of ZnO NRs and the developed microfluidic platform for the early detection of DENV-3, with possible expansion to other biological targets, hence paving the way for enhanced public health responses and improved disease management strategies.

6.
Nanomaterials (Basel) ; 13(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37299702

RESUMO

This study systematically investigates the influence of antimony (Sb) species on the electrical properties of Sb-doped zinc oxide (SZO) thin films prepared by pulsed laser deposition in an oxygen-rich environment. The Sb species-related defects were controlled through a qualitative change in energy per atom by increasing the Sb content in the Sb2O3:ZnO-ablating target. By increasing the content of Sb2O3 (wt.%) in the target, Sb3+ became the dominant Sb ablation species in the plasma plume. Consequently, n-type conductivity was converted to p-type conductivity in the SZO thin films prepared using the ablating target containing 2 wt.% Sb2O3. The substituted Sb species in the Zn site (SbZn3+ and SbZn+) were responsible for forming n-type conductivity at low-level Sb doping. On the other hand, the Sb-Zn complex defects (SbZn-2VZn) contributed to the formation of p-type conductivity at high-level doping. The increase in Sb2O3 content in the ablating target, leading to a qualitative change in energy per Sb ion, offers a new pathway to achieve high-performing optoelectronics using ZnO-based p-n junctions.

7.
RSC Adv ; 13(21): 14729-14736, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37197674

RESUMO

Melamine contamination in food and beverages affects short- and long-term health. In this work, enhanced sensitivity and selectivity in photoelectrochemical determination for melamine detection was achieved using copper(ii) oxide (CuO) combined with a molecularly imprinted polymer (MIP). A CuO nanomaterial was used to achieve MIP surface modification via co-precipitation synthesis. An MIP film was deposited by polymerizing the methacrylic acid monomer and a melamine template. The properties of the CuO nanomaterials, such as the surface morphology, chemical oxidation state, and crystalline structure, were characterized using field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction patterns (XRD), respectively. The diffuse reflection spectroscopy technique was applied to evaluate the optical properties of the CuO nanoparticles. The results indicated that the synthesized CuO nanomaterials had a monoclinic structure with an optical bandgap of 1.49 eV, which corresponds to absorbance in the visible light region. CPE electrodes with surface-modified CuO/MIP were measured using the photoelectrochemical techniques of cyclic voltammetry, differential pulse voltammetry (DPV), and amperometry. The modified CuO/MIP electrode for melamine detection in 7.4 pH PBS buffer solution exhibited a high sensitivity of 0.332 nA nM-1, with a linear range of 5.0-75.0 nM and a limit of detection of 2.45 nM. Moreover, real samples of various kinds of milk were applied to evaluate the sensing response of the prepared CuO/MIP electrode. The modified CuO/MIP electrodes could be reused seven times with good reproducibility and high selectivity for melamine detection.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36361157

RESUMO

Of late, air pollution in Asia has increased, particularly in built-up areas due to rapid industrialization and urbanization. The present study sets out to examine the impact that pollution can have on the health of people living in the inner city of Bangkok, Thailand. Consequently, in 2021, fine particulate matter (PM2.5) and coarse particulate matter (PM10) chemical composition and sources are evaluated at three locations in Bangkok. To identify the possible sources of such particulates, therefore, the principal component analysis (PCA) technique is duly carried out. As determined via PCA, the major sources of air pollution in Bangkok are local emission sources and sea salt. The most significant local sources of PM2.5 and PM10 in Bangkok include primary combustion, such as vehicle emissions, coal combustion, biomass burning, secondary aerosol formation, industrial emissions, and dust sources. Except for the hazard quotient (HQ) of Ni and Mn of PM2.5 for adults, the HQ values of As, Cd, Cr, Mn, and Ni of both PM2.5 and PM10 were below the safe level (HQ = 1) for adults and children. This indicates that exposure to these metals would have non-carcinogenic health effects. Except for the carcinogenic risk (HI) value of Cr of PM2.5 and PM10, which can cause cancer in adults, at Bangna and Din Daeng, the HI values of Cd, Ni, As, and Pb of PM2.5 and PM10 are below the limit set by the U.S. Environmental Protection Agency (U.S. EPA). Ni and Mn pose non-carcinogenic risks, whereas Cr poses carcinogenic risks to adults via inhalation, a serious threat to the residents of Bangkok.


Assuntos
Poluentes Atmosféricos , Adulto , Criança , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Tailândia , Cádmio/análise , Material Particulado/análise , Poeira/análise , Carvão Mineral/análise , Medição de Risco , Carcinógenos/análise
9.
Foods ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804668

RESUMO

Chicken meat from spent laying hens (SHs) has been considered as nutritive as the meat of commercial broilers (CBs) based on chemical composition. High insoluble collagen in SH meat might reduce protein digestibility and bio-accessibility compared to CB meat. This study aimed at comparing the in vitro protein digestibility of CB and SH cooked breast meat. In the first part, CB samples were digested using two static in vitro digestion methods and collected at different digestion points for determining the degree of hydrolysis (DH). The method providing a greater DH value was chosen for comparing protein digestibility between CB and SH samples. The activities of used enzymes during in vitro digestion were evaluated based on bicinchoninic acid assay 2,4,6-trinitrobenzenesulfonic acid colorimetric method, gas chromatography-mass spectrometry, and sodium dodecyl sulfate-polyacrylamide electrophoresis. Particle size distribution of solid content collected from hydrolysate was also determined. The results showed that after digestion, CB showed 1−3 mg/mL protein concentration lower, while 7−13% DH and 50−96 µmoL/g protein-free NH2 groups higher when compared to those of SH. Based on sodium dodecyl sulfate-polyacrylamide electrophoresis, CB samples exhibited greater intensity of band at MW < 15 kDa than that of SH. Regarding particle size in terms of volume weighted mean (D[4,3]), at the end of the oral phase, the end of the gastric phase, and the beginning of the intestinal phase, D[4,3] of the SH samples were 133.17 ± 2.16, 46.52 ± 2.20, and 112.96 ± 3.63 µm, respectively, which were greater than those of CB (53.28 ± 1.23, 35.59 ± 1.19, and 51.68 ± 1.25 µm). However, at the end of the intestinal phase, D[4,3] of SH and CB, which were 17.19 ± 1.69 and 17.52 ± 2.46 µm, respectively, did not significantly differ from each other. The findings suggested a greater in vitro protein digestibility of cooked CB breast meats than that of SH ones.

10.
Nanoscale ; 14(12): 4484-4494, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35234770

RESUMO

Zinc oxide (ZnO) nanowires have shown their potential in isolation of cancer-related biomolecules such as extracellular vesicles (EVs), RNAs, and DNAs for early diagnosis and therapeutic development of diseases. Since the function of inorganic nanowires changes depending on their morphology, previous studies have established strategies to control the morphology and have demonstrated attainment of improved properties for gas and organic compound detection, and for dye-sensitized solar cells and photoelectric conversion performance. Nevertheless, crystallinity and morphology of ZnO nanowires for capturing EVs, an important biomarker of cancer, have not yet been discussed. Here, we fabricated ZnO nanowires with different crystallinities and morphologies using an ammonia-assisted hydrothermal method, and we comprehensively analyzed the crystalline nature and oriented growth of the synthesized nanowires by X-ray diffraction and selected area electron diffraction using high resolution transmission electron microscopy. In evaluating the performance of label-free EV capture in a microfluidic device platform, we found both the crystallinity and morphology of ZnO nanowires affected EV capture efficiency. In particular, the zinc blende phase was identified as important for crystallinity, while increasing the nanowire density in the array was important for morphology to improve EV capture performance. These results highlighted that the key physicochemical properties of the ZnO nanowires were related to the EV capture performance.


Assuntos
Vesículas Extracelulares , Nanofios , Óxido de Zinco , Microscopia Eletrônica de Transmissão , Nanofios/química , Difração de Raios X , Óxido de Zinco/química
11.
Nanomaterials (Basel) ; 11(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34361154

RESUMO

RNA analytical platforms gained extensive attention recently for RNA-based molecular analysis. However, the major challenge for analyzing RNAs is their low concentration in blood plasma samples, hindering the use of RNAs for diagnostics. Platforms that can enrich RNAs are essential to enhance molecular detection. Here, we developed the annealed ZnO/Al2O3 core-shell nanowire device as a platform to capture RNAs. We showed that the annealed ZnO/Al2O3 core-shell nanowire could capture RNAs with high efficiency compared to that of other circulating nucleic acids, including genomic DNA (gDNA) and cell-free DNA (cfDNA). Moreover, the nanowire was considered to be biocompatible with blood plasma samples due to the crystalline structure of the Al2O3 shell which serves as a protective layer to prevent nanowire degradation. Our developed device has the potential to be a platform for RNA-based extraction and detection.

12.
Animals (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064247

RESUMO

The present study aimed at assessing the impact of lysine restriction performed during different feeding phases on growth performances, meat quality traits and technological properties as well as on the incidence and severity of breast muscle abnormalities. For this purpose, a total of 945 one-day-old Ross 308 male chicks was randomly divided into three experimental groups: CONT, fed a four feeding phases commercial diet, GRW I, and GRW I + II fed CONT diet with the depletion of synthetic lysine during grower I and grower I and II feeding phases, respectively. Productive performances were recorded throughout the whole rearing cycle and the incidence of breast muscle growth-related abnormalities assessed at slaughter (49 d) on 280 breasts/group. Quality traits and technological properties of breast meat were measured on a total of 54 Pectoralis major muscles. Lysine restriction only marginally affected the productive performances and the quality parameters of breast meat. The increased (p < 0.05) solubility of the protein fraction along with the remarkably higher (p < 0.05) anserine content found in GRW I + II suggests an increased energy requirement in the pectoral muscles belonging to lysine-restricted birds and supports the hypothesis of a reduced protein synthesis taking place within these muscles.

13.
ACS Macro Lett ; 10(3): 365-369, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549058

RESUMO

Antibacterial materials containing biocides suffer from the fact that biocides are usually quickly released and hence display a limited antibacterial ability over a long period of time. To overcome this problem, the antibacterial agent 6-chloropurine is conjugated to a monomer via a hemiaminal ether linkage. The functional monomer is then reacted with a urethane acrylate by photopolymerization to yield thin polymer coatings. The release of the antibacterial agent from the coatings is sustained due to the slow kinetics of the hydrolysis of the hemiaminal ether linkage. Antibacterial performance is achieved against S. aureus and E. coli bacteria. This simple strategy can be applied for the rapid preparation of antibacterial coatings on various substrates and other applications such as antifouling or anticorrosion coatings.


Assuntos
Desinfetantes , Staphylococcus aureus , Antibacterianos/farmacologia , Escherichia coli , Éter , Éteres , Concentração de Íons de Hidrogênio , Polímeros/farmacologia
14.
Nanotechnology ; 32(9): 095303, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33203810

RESUMO

Carbon nanotube/polydimethylsiloxane composite micropillar (CNT/PDMS MP) arrays were successfully fabricated using non-lithographic silicon nanowire (SiNW) arrays as a template for performance enhancement of triboelectric nanogenerators (TENG). The CNT/PDMS MP arrays were obtained by pouring CNT/PDMS composites on the SiNW arrays and peeled off. Surface topology of CNT/PDMS composites directly depends on morphology of SiNW arrays, which can be varied by the etching time of the typical metal-assisted chemical etching process. The micropatterned CNT/PDMS composites was mostly depicted to the SiNW array template pattern when the morphologies of the SiNW were optimized with a length of approximately 10 mm. Next, the CNT/PDMS MP arrays were utilized as a triboelectric layer of TENGs, generating the maximum output voltage of 22.84 ± 0.85 V, enabling an approximately 18-fold improvement in an electrical output compared to the flat PDMS-based TENG. The performance enhancement of TENGs based on CNT/PDMS MP arrays are attributed to synergic effects of (1) an enhancement of electrostatic induction by CNT composites, increasing dielectric constant, and (2) an enhancement of electrification by surface texturing using non-lithographic pattern and CNT composites.

15.
Polymers (Basel) ; 14(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35012114

RESUMO

Novel molecularly imprinted polymers (MIPs) represent a selectively recognized technique for electrochemical detection design. This rapid and simple method prepared via chemical synthesis consists of a monomer crosslinked with an initiator, whereas low sensitivity remains a drawback. Nanomaterials can improve charge transfer for MIP surface modification in order to overcome this problem. SPIONs have semiconductor and superparamagnetic properties that can enhance carrier mobility, causing high sensitivity of electrochemical detection. In this work, surface modification was achieved with a combination of MIP and SPIONs for gluten detection. The SPIONs were synthesized via the chemical co-precipitation method and mixed with MIPs by polymerizing gluten and methyl methacrylate (MMA), presented as a template and a monomer. Magnetic MIP (MMIP) was modified on a carbon-plate electrode. The morphology of modified electrode surfaces was determined by scanning electron microscopy-energy-dispersive X-ray spectrometry. The performance of the MMIP electrode was confirmed by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The MMIP electrode for gluten detection shows a dynamic linear range of 5-50 ppm, with a correlation coefficient of 0.994 and a low detection limit of 1.50 ppm, which is less than the U.S. Food and Drug Administration requirements (20 ppm); moreover, it exhibits excellent selectivity, sensitivity, stability, and reproducibility.

16.
Chem Commun (Camb) ; 55(78): 11691-11694, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31508619

RESUMO

Ar&H2 plasma treatment was proposed to enhance the response of a p-CuAlO2 sensor toward volatile organic compounds. Comprehensive defect characterization studies indicate a substantial increase of surface unsaturated oxygen vacancy (VO) defects via plasma treatment, which could provide active sites for molecule adsorption and the subsequent interfacial redox reaction.

17.
ACS Appl Mater Interfaces ; 11(6): 6624-6633, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30656940

RESUMO

Thermoelectric generation capable of delivering reliable performance in the low-temperature range (<150 °C) for large-scale deployment has been a challenge mainly due to limited properties of thermoelectric materials. However, realizing interdependence of topological insulators and thermoelectricity, a new research dimension on tailoring and using the topological-insulator boundary states for thermoelectric enhancement has emerged. Here, we demonstrate a promising hybrid nanowire of topological bismuth telluride (Bi2Te3) within the conductive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) matrix using the in situ one-pot synthesis to be incorporated into a three-dimensional network of self-assembled hybrid thermoelectric nanofilms for the scalable thermoelectric application. Significantly, the nanowire-incorporated film network exhibits simultaneous increase in electrical conductivity and Seebeck coefficient as opposed to reduced thermal conductivity, improving thermoelectric performance. Based on comprehensive measurements for electronic transport of individual nanowires revealing an interfacial conduction path along the Bi2Te3 core inside the encapsulating layer and that the hybrid nanowire is n-type semiconducting, the enhanced thermoelectricity is ascribed to increased hole mobility due to electron transfer from Bi2Te3 to PEDOT:PSS and importantly charge transport via the Bi2Te3-PEDOT:PSS interface. Scaling up the nanostructured material to construct a thermoelectric generator having the generic pipeline-insulator geometry, the device exhibits a power factor and a figure of merit of 7.45 µW m-1 K-2 and 0.048, respectively, with an unprecedented output power of 130 µW and 15 day operational stability at Δ T = 60 °C. Our findings not only encourage a new approach to cost-effective thermoelectric generation, but they could also provide a route for the enhancement of other applications based on the topological nanowire.

18.
ACS Appl Mater Interfaces ; 10(7): 6433-6440, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29368920

RESUMO

Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 µW/cm2, which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

19.
ACS Appl Mater Interfaces ; 8(41): 27892-27899, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27670883

RESUMO

Here we show a rational strategy to fabricate single crystalline NiO nanowires via a vapor-liquid-solid (VLS) route, which essentially allows us to tailor the diameter and the spatial position. Our strategy is based on the suppression of the nucleation at vapor-solid (VS) interface, which promotes nucleation only at the liquid-solid (LS) interface. Manipulating both the supplied material fluxes (oxygen and metal) and the growth temperature enables enhancement of the nucleation only at the LS interface. Furthermore, this strategy allows us to reduce the growth temperature of single crystalline NiO nanowires down to 550 °C, which is the lowest growth temperature so far reported.

20.
Nano Lett ; 15(10): 6406-12, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26372675

RESUMO

Metal oxide nanowires hold great promise for various device applications due to their unique and robust physical properties in air and/or water and also due to their abundance on Earth. Vapor-liquid-solid (VLS) growth of metal oxide nanowires offers the high controllability of their diameters and spatial positions. In addition, VLS growth has applicability to axial and/or radial heterostructures, which are not attainable by other nanowire growth methods. However, material species available for the VLS growth of metal oxide nanowires are substantially limited even though the variety of material species, which has fascinating physical properties, is the most interesting feature of metal oxides. Here we demonstrate a rational design for the VLS growth of various metal oxide nanowires, based on the "material flux window". This material flux window describes the concept of VLS nanowire growth within a limited material flux range, where nucleation preferentially occurs only at a liquid-solid interface. Although the material flux was previously thought to affect primarily the growth rate, we experimentally and theoretically demonstrate that the material flux is the important experimental variable for the VLS growth of metal oxide nanowires. On the basis of the material flux window concept, we discover novel metal oxide nanowires, composed of MnO, CaO, Sm2O3, NiO, and Eu2O3, which were previously impossible to form via the VLS route. The newly grown NiO nanowires exhibited stable memristive properties superior to conventional polycrystalline devices due to the single crystallinity. Thus, this VLS design route offers a useful guideline for the discovery of single crystalline nanowires that are composed of functional metal oxide materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA