Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 234(6): 2044-2056, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34719786

RESUMO

Bacterial communities form the basis of biogeochemical processes and determine plant growth and health. Mosses harbour diverse bacterial communities that are involved in nitrogen fixation and carbon cycling. Global climate change is causing changes in aboveground plant biomass and shifting species composition in the Arctic, but little is known about the response of moss microbiomes in these environments. Here, we studied the total and potentially active bacterial communities associated with Racomitrium lanuginosum in response to a 20-yr in situ warming in an Icelandic heathland. We evaluated the effect of warming and warming-induced shrub expansion on the moss bacterial community composition and diversity, and nifH gene abundance. Warming changed both the total and the potentially active bacterial community structure, while litter abundance only affected the total bacterial community structure. The abundance of nifH genes was negatively affected by litter abundance. We also found shifts in the potentially nitrogen-fixing community, with Nostoc decreasing and noncyanobacterial diazotrophs increasing in relative abundance. Our data suggest that the moss microbial community and potentially nitrogen fixing taxa will be sensitive to future warming, partly via changes in litter and shrub abundance.


Assuntos
Briófitas , Microbiota , Regiões Árticas , Bactérias/genética , Briófitas/genética , Microbiota/genética , Nitrogênio , Fixação de Nitrogênio/genética , Tundra
2.
Front Microbiol ; 11: 540404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391192

RESUMO

Lichens are traditionally defined as a symbiosis between a fungus and a green alga and or a cyanobacterium. This idea has been challenged by the discovery of bacterial communities inhabiting the lichen thalli. These bacteria are thought to contribute to the survival of lichens under extreme and changing environmental conditions. How these changing environmental conditions affect the lichen-associated bacterial community composition remains unclear. We describe the total (rDNA-based) and potentially metabolically active (rRNA-based) bacterial community of the lichen Cetaria islandica and its response to long-term warming using a 20-year warming experiment in an Icelandic sub-Arctic tundra. 16S rRNA and rDNA amplicon sequencing showed that the orders Acetobacterales (of the class Alphaproteobacteria) and Acidobacteriales (of the phylum Acidobacteria) dominated the bacterial community. Numerous amplicon sequence variants (ASVs) could only be detected in the potentially active community but not in the total community. Long-term warming led to increases in relative abundance of bacterial taxa on class, order and ASV level. Warming altered the relative abundance of ASVs of the most common bacterial genera, such as Granulicella and Endobacter. The potentially metabolically active bacterial community was also more responsive to warming than the total community. Our results suggest that the bacterial community of the lichen C. islandica is dominated by acidophilic taxa and harbors disproportionally active rare taxa. We also show for the first time that climate warming can lead to shifts in lichen-associated bacterial community composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA