Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 32(10): 1247-1256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062283

RESUMO

Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape's production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Inseticidas/análise , Glucosinolatos , Neonicotinoides/toxicidade , Néctar de Plantas , Sementes/química , Polinização
2.
PLoS One ; 17(9): e0273851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074788

RESUMO

Neonicotinoid insecticides applied to flowering crops can have negative impacts on bees, with implications for crop pollination. To assess if exposure to the neonicotinoid clothianidin via a treated crop (rapeseed) affected bee behaviour, pollination performance (to strawberry), and bee reproduction, we provided each of 12 outdoor cages with rapeseed (autumn-sown plants complemented with a few spring-sown plants to extend the flowering period) grown from either clothianidin-treated or untreated (control) seeds, together with strawberry plants and a small population of red mason bees (Osmia bicornis). We expected clothianidin to reduce bee foraging activity, resulting in impaired strawberry pollination and bee reproduction. During the early stage of the experiment, we observed no difference between treatments in the length of entire foraging trips, or the combined number of rapeseed and strawberry flowers that the bees visited during these trips. During the later stage of the experiment, we instead determined the time a female took to visit 10 rapeseed flowers, as a proxy for foraging performance. We found that they were 10% slower in clothianidin cages. Strawberries weighed less in clothianidin cages, suggesting reduced pollination performance, but we were unable to relate this to reduced foraging activity, because the strawberry flowers received equally many visits in the two treatments. Clothianidin-exposed females sealed their nests less often, but offspring number, sex ratio and weight were similar between treatments. Observed effects on bee behaviour appeared by the end of the experiment, possibly because of accumulated effects of exposure, reduced bee longevity, or higher sensitivity of the protocols we used during the later phase of the experiment. Although the lack of a mechanistic explanation calls for interpreting the results with cautiousness, the lower strawberry weight in clothianidin cages highlights the importance of understanding complex effects of plant protection products, which could have wider consequences than those on directly exposed organisms.


Assuntos
Brassica napus , Brassica rapa , Fragaria , Inseticidas , Animais , Abelhas , Feminino , Flores/química , Guanidinas , Inseticidas/farmacologia , Neonicotinoides/toxicidade , Polinização , Sementes/química , Tiazóis
3.
Chemosphere ; 273: 128518, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33092828

RESUMO

Risk assessment studies addressing effects of agrochemicals on bumblebees frequently use microcolonies. These are queenless colonies consisting of workers only in which typically one worker will lay unfertilized male-destined eggs. In the first tier of risk assessment for bees, short-term laboratory experiments (e.g. microcolonies) are used, the results of which will determine whether higher tier (semi-)field experiments are needed. To evaluate the suitability of microcolonies for risk assessment, a direct comparison between different assessment methods for the neonicotinoid pesticides acetamiprid and thiacloprid was made: microcolonies and queenright colonies under short-term laboratory conditions, queenright colonies under long-term laboratory conditions, and queenright colonies under field conditions. Here, we demonstrate that results from microcolonies contradict results from queenright colonies. While thiacloprid negatively impacted gyne production in queenright colonies, it had a positive effect on microcolony size. By contrast, thiacloprid had no significant effect on fitness parameters of queenright colonies under short-term laboratory conditions when mostly workers are produced. These results thus highlight both the need for long term assessments, allowing evaluation of gyne production, and the risk of reaching erroneous conclusions when using microcolonies. The negative effect of thiacloprid on colony fitness was confirmed under field conditions, where thiacloprid affected the production of reproductives, colony weight gain, worker weight, and foraging behaviour. For acetamiprid, a negative trend on colony fitness could only be shown in a field setup. Therefore, field-realistic setups, which allow colonies to forage freely, are most appropriate to assess sublethal effects of pesticides affecting behaviour and learning.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Inseticidas/toxicidade , Laboratórios , Masculino , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Reprodução , Medição de Risco
4.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
5.
Nature ; 521(7550): 77-80, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25901681

RESUMO

Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid ß-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Brassica rapa , Inseticidas/efeitos adversos , Sementes , Animais , Animais Selvagens/fisiologia , Abelhas/crescimento & desenvolvimento , Brassica rapa/química , Produtos Agrícolas/química , Feminino , Guanidinas/efeitos adversos , Guanidinas/farmacologia , Guanidinas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Masculino , Neonicotinoides , Comportamento de Nidação/efeitos dos fármacos , Nitrilas/efeitos adversos , Nitrilas/farmacologia , Nitrilas/toxicidade , Néctar de Plantas/química , Pólen/química , Polinização , Densidade Demográfica , Piretrinas/efeitos adversos , Piretrinas/farmacologia , Piretrinas/toxicidade , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Sementes/química , Suécia , Tiazóis/efeitos adversos , Tiazóis/farmacologia , Tiazóis/toxicidade
6.
Proc Biol Sci ; 281(1775): 20132440, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24307669

RESUMO

Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.


Assuntos
Abelhas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Polinização , Animais , Comércio , Produtos Agrícolas/economia
7.
PLoS One ; 8(8): e72724, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977347

RESUMO

Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne) and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding.


Assuntos
Abelhas/fisiologia , Produtos Agrícolas/fisiologia , Flores/química , Fragaria/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Antenas de Artrópodes/fisiologia , Feminino , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA