Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6043-6050, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717152

RESUMO

Studying antiferromagnetic domains is essential for fundamental physics and potential spintronics applications. Despite their importance, few systematic studies have been performed on antiferromagnet (AFM) domains with high spatial resolution in van der Waals (vdW) materials, and direct probing of the Néel vectors remains challenging. In this work, we found multidomain states in the vdW AFM NiPS3, a material extensively investigated for its unique magnetic exciton. We employed photoemission electron microscopy combined with the X-ray magnetic linear dichroism (XMLD-PEEM) to image the NiPS3's magnetic structure. The nanometer-spatial resolution of XMLD-PEEM allows us to determine local Néel vector orientations and discover thermally fluctuating Néel vectors that are independent of the crystal symmetry even at 65 K, well below the TN of 155 K. We demonstrate that an in-plane orbital moment of the Ni ion is responsible for the weak magnetocrystalline anisotropy. The observed thermal fluctuations of the antiferromagnetic domains may explain the broadening of magnetic exciton peaks at higher temperatures.

2.
Nature ; 627(8002): 67-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448698

RESUMO

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

3.
Adv Mater ; : e2311157, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402421

RESUMO

Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO3 (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L3 edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71° between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays.

4.
ACS Catal ; 13(20): 13484-13505, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881789

RESUMO

In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.

5.
Nat Commun ; 14(1): 174, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635276

RESUMO

Understanding chemical reactivity and magnetism of 3d transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co3O4 and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.

6.
ACS Nano ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469418

RESUMO

Hydrogen spillover from metal nanoparticles to oxides is an essential process in hydrogenation catalysis and other applications such as hydrogen storage. It is important to understand how far this process is reaching over the surface of the oxide. Here, we present a combination of advanced sample fabrication of a model system and in situ X-ray photoelectron spectroscopy to disentangle local and far-reaching effects of hydrogen spillover in a platinum-ceria catalyst. At low temperatures (25-100 °C and 1 mbar H2) surface O-H formed by hydrogen spillover on the whole ceria surface extending microns away from the platinum, leading to a reduction of Ce4+ to Ce3+. This process and structures were strongly temperature dependent. At temperatures above 150 °C (at 1 mbar H2), O-H partially disappeared from the surface due to its decreasing thermodynamic stability. This resulted in a ceria reoxidation. Higher hydrogen pressures are likely to shift these transition temperatures upward due to the increasing chemical potential. The findings reveal that on a catalyst containing a structure capable to promote spillover, hydrogen can affect the whole catalyst surface and be involved in catalysis and restructuring.

7.
ACS Nano ; 16(12): 20589-20597, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36410735

RESUMO

The absence of stray fields, their insensitivity to external magnetic fields, and ultrafast dynamics make antiferromagnets promising candidates for active elements in spintronic devices. Here, we demonstrate manipulation of the Néel vector in the metallic collinear antiferromagnet Mn2Au by combining strain and femtosecond laser excitation. Applying tensile strain along either of the two in-plane easy axes and locally exciting the sample by a train of femtosecond pulses, we align the Néel vector along the direction controlled by the applied strain. The dependence on the laser fluence and strain suggests the alignment is a result of optically triggered depinning of 90° domain walls and their motion in the direction of the free energy gradient, governed by the magneto-elastic coupling. The resulting, switchable state is stable at room temperature and insensitive to magnetic fields. Such an approach may provide ways to realize robust high-density memory device with switching time scales in the picosecond range.

8.
Materials (Basel) ; 14(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885290

RESUMO

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser-target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.

9.
Struct Dyn ; 7(5): 054302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32984434

RESUMO

Ultrafast phenomena on a femtosecond timescale are commonly examined by pump-probe experiments. This implies multiple measurements, where the sample under investigation is pumped with a short light pulse and then probed with a second pulse at various time delays to follow its dynamics. Recently, the principle of streaking extreme ultraviolet (XUV) pulses in the temporal domain has enabled recording the dynamics of a system within a single pulse. However, separate pump-probe experiments at different absorption edges still lack a unified timing, when comparing the dynamics in complex systems. Here, we report on an experiment using a dedicated optical element and the two-color emission of the FERMI XUV free-electron laser to follow the charge and spin dynamics in composite materials at two distinct absorption edges, simultaneously. The sample, consisting of ferromagnetic Fe and Ni layers, separated by a Cu layer, is pumped by an infrared laser and probed by a two-color XUV pulse with photon energies tuned to the M-shell resonances of these two transition metals. The experimental geometry intrinsically avoids any timing uncertainty between the two elements and unambiguously reveals an approximately 100 fs delay of the magnetic response with respect to the electronic excitation for both Fe and Ni. This delay shows that the electronic and spin degrees of freedom are decoupled during the demagnetization process. We furthermore observe that the electronic dynamics of Ni and Fe show pronounced differences when probed at their resonance, while the demagnetization dynamics are similar. These observations underline the importance of simultaneous investigation of the temporal response of both charge and spin in multi-component materials. In a more general scenario, the experimental approach can be extended to continuous energy ranges, promising the development of jitter-free transient absorption spectroscopy in the XUV and soft X-ray regimes.

10.
Chem Sci ; 11(48): 13060-13070, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34123242

RESUMO

Understanding the metal-support interaction (MSI) is crucial to comprehend how the catalyst support affects performance and whether this interaction can be exploited in order to design new catalysts with enhanced properties. Spatially resolved soft X-ray absorption spectroscopy (XAS) in combination with Atomic Force Microscopy (AFM) and Scanning Helium Ion-Milling Microscopy (SHIM) has been applied to visualise and characterise the behaviour of individual cobalt nanoparticles (CoNPs) supported on two-dimensional substrates (SiO x Si(100) (x < 2) and rutile TiO2(110)) after undergoing reduction-oxidation-reduction (ROR). The behaviour of the Co species is observed to be strongly dependent on the type of support. For SiO x Si a weaker MSI between Co and the support allows a complete reduction of CoNPs although they migrate and agglomerate. In contrast, a stronger MSI of CoNPs on TiO2 leads to only a partial reduction under H2 at 773 K (as observed from Co L3-edge XAS data) due to enhanced TiO2 binding of surface-exposed cobalt. SHIM data revealed that the interaction of the CoNPs is so strong on TiO2, that they are seen to spread at and below the surface and even to migrate up to ∼40 nm away. These results allow us to better understand deactivation phenomena and additionally demonstrate a new understanding concerning the nature of the MSI for Co/TiO2 and suggest that there is scope for careful control of the post-synthetic thermal treatment for the tuning of this interaction and ultimately the catalytic performance.

11.
Nanoscale ; 12(1): 189-194, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31803884

RESUMO

Using state-of-the-art electron-beam lithography, Ising-type nanomagnets may be defined onto nearly any two-dimensional pattern imaginable. The ability to directly observe magnetic configurations achieved in such artificial spin systems makes them a perfect playground for the realization of artificial spin glasses. However, no experimental realization of a finite-temperature artificial spin glass has been achieved so far. Here, we aim to get a significant step closer in achieving that goal by introducing an artificial spin system with random interactions and increased effective dimension: dipolar Cayley tree. Through synchrotron-based photoemission electron microscopy, we show that an improved balance of ferro- and antiferromagnetic ordering can be achieved in this type of system. This combined with an effective dimension as high as d = 2.72 suggests that future systems generated out of these building blocks can host finite temperature spin glass phases, allowing for real-time observation of glassy dynamics.

12.
ACS Nano ; 13(12): 13910-13916, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31820931

RESUMO

Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties. Here, we use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image the magnetic stray field distribution of an artificial spin ice system exhibiting structural chirality as a function of applied magnetic fields at 4.2 K. The images reveal that the magnetostatic interaction gives rise to a measurable bending of the magnetization at the edges of the nanomagnets. Micromagnetic simulations predict that, owing to the structural chirality of the system, this edge bending is asymmetric in the presence of an external field and gives rise to a preferred direction for the reversal of the magnetization. This effect is not captured by models assuming a uniform magnetization. Our technique thus provides a promising means for understanding the collective response of artificial spin ices and their interactions.

13.
J Synchrotron Radiat ; 26(Pt 3): 785-792, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074443

RESUMO

The successful design, installation and operation of a high spatial resolution X-ray photoelectron spectrometer at the Swiss Light Source is presented. In this instrument, a Fresnel zone plate is used to focus an X-ray beam onto the sample and an electron analyzer positioned at 45° with respect to the incoming beam direction is used to collect photoelectrons from the backside of the sample. By raster scanning the sample, transmitted current, X-ray absorption and X-ray photoemission maps can be simultaneously acquired. This work demonstrates that chemical information can be extracted with micrometre resolution; the results suggest that a spatial resolution better than 100 nm can be achieved with this approach in future. This kind of photoelectron spectromicroscope will allow in situ measurements with high spatial resolution also under ambient pressure conditions (in the millibar range). Element-specific X-ray photoemission maps can be obtained before and while exposing the sample to gas/gas mixtures to show morphological and chemical changes of the surface.

14.
Science ; 363(6434): 1435-1439, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923219

RESUMO

Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction. This coupling is mediated by chiral domain walls between out-of-plane and in-plane magnetic regions and dominates the behavior of nanomagnets below a critical size. We used this concept to realize lateral exchange bias, field-free current-induced switching between multistate magnetic configurations as well as synthetic antiferromagnets, skyrmions, and artificial spin ices covering a broad range of length scales and topologies. Our work provides a platform to design arrays of correlated nanomagnets and to achieve all-electric control of planar logic gates and memory devices.

15.
Sci Adv ; 5(2): eaav4489, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30801017

RESUMO

Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (-CN⋅⋅⋅NC-) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be free-standing, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly.

16.
Nat Nanotechnol ; 13(12): 1161-1166, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275493

RESUMO

Magnetic skyrmions are knot-like quasiparticles. They are candidates for non-volatile data storage in which information is moved between fixed read and write terminals. The read-out operation of skyrmion-based spintronic devices will rely on the electrical detection of a single magnetic skyrmion within a nanostructure. Here we present Pt/Co/Ir nanodiscs that support skyrmions at room temperature. We measured the Hall resistivity and simultaneously imaged the spin texture using magnetic scanning transmission X-ray microscopy. The Hall resistivity is correlated to both the presence and size of the skyrmion. The size-dependent part matches the expected anomalous Hall signal when averaging the magnetization over the entire disc. We observed a resistivity contribution that only depends on the number and sign of skyrmion-like objects present in the disc. Each skyrmion gives rise to 22 ± 2 nΩ cm irrespective of its size. This contribution needs to be considered in all-electrical detection schemes applied to skyrmion-based devices. Not only the area of Néel skyrmions but also their number and sign contribute to their Hall resistivity.

17.
Opt Express ; 26(9): 12242-12256, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716137

RESUMO

While the industrial implementation of extreme ultraviolet lithography for upcoming technology nodes is becoming ever more realistic, a number of challenges have yet to be overcome. Among them is the need for actinic mask inspection. We report on reflective-mode lensless imaging of a patterned multi-layer mask sample at extreme ultraviolet wavelength that provides a finely structured defect map of the sample under test. Here, we present the imaging results obtained using ptychography in reflection mode at 6° angle of incidence from the surface normal and 13.5 nm wavelength. Moreover, an extended version of the difference map algorithm is employed that substantially enhances the reconstruction quality by taking into account both long and short-term variations of the incident illumination.

18.
Nanotechnology ; 29(26): 265205, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29620015

RESUMO

Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

19.
Nano Lett ; 18(2): 1205-1212, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29314849

RESUMO

Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids. However, scalable production beyond exfoliation from bulk single crystals remained a major challenge. Single-orientation monolayer h-BN nanomesh is grown on 4 in. wafer single crystalline rhodium films and transferred on arbitrary substrates such as SiO2, germanium, or transmission electron microscopy grids. The transfer process involves application of tetraoctylammonium bromide before electrochemical hydrogen delamination. The material performance is demonstrated with two applications. First, protective sealing of h-BN is shown by preserving germanium from oxidation in air at high temperatures. Second, the membrane functionality of the single h-BN layer is demonstrated in aqueous solutions. Here, we employ a growth substrate intrinsic preparation scheme to create regular 2 nm holes that serve as ion channels in liquids.

20.
Nat Mater ; 16(11): 1106-1111, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29058727

RESUMO

Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA