Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2315662121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346185

RESUMO

Most of the geologic CO2 entering Earth's atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2 and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite-talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul's transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq) concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of -3.40 ± 0.04‰, and the enrichment of CO2 in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul's Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.

2.
Geobiology ; 21(6): 758-769, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615250

RESUMO

Mechanisms of nucleic acid accumulation were likely critical to life's emergence in the ferruginous oceans of the early Earth. How exactly prebiotic geological settings accumulated nucleic acids from dilute aqueous solutions, is poorly understood. As a possible solution to this concentration problem, we simulated the conditions of prebiotic low-temperature alkaline hydrothermal vents in co-precipitation experiments to investigate the potential of ferruginous chemical gardens to accumulate nucleic acids via sorption. The injection of an alkaline solution into an artificial ferruginous solution under anoxic conditions (O2 < 0.01% of present atmospheric levels) and at ambient temperatures, caused the precipitation of amakinite ("white rust"), which quickly converted to chloride-containing fougerite ("green rust"). RNA was only extractable from the ferruginous solution in the presence of a phosphate buffer, suggesting RNA in solution was bound to Fe2+ ions. During chimney formation, this iron-bound RNA rapidly accumulated in the white and green rust chimney structure from the surrounding ferruginous solution at the fastest rates in the initial white rust phase and correspondingly slower rates in the following green rust phase. This represents a new mechanism for nucleic acid accumulation in the ferruginous oceans of the early Earth, in addition to wet-dry cycles and may have helped to concentrate RNA in a dilute prebiotic ocean.

5.
ISME J ; 16(1): 257-271, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34312482

RESUMO

Thermodynamic models predict that H2 is energetically favorable for seafloor microbial life, but how H2 affects anabolic processes in seafloor-associated communities is poorly understood. Here, we used quantitative 13C DNA stable isotope probing (qSIP) to quantify the effect of H2 on carbon assimilation by microbial taxa synthesizing 13C-labeled DNA that are associated with partially serpentinized peridotite rocks from the equatorial Mid-Atlantic Ridge. The rock-hosted seafloor community was an order of magnitude more diverse compared to the seawater community directly above the rocks. With added H2, peridotite-associated taxa increased assimilation of 13C-bicarbonate and 13C-acetate into 16S rRNA genes of operational taxonomic units by 146% (±29%) and 55% (±34%), respectively, which correlated with enrichment of H2-oxidizing NiFe-hydrogenases encoded in peridotite-associated metagenomes. The effect of H2 on anabolism was phylogenetically organized, with taxa affiliated with Atribacteria, Nitrospira, and Thaumarchaeota exhibiting the most significant increases in 13C-substrate assimilation in the presence of H2. In SIP incubations with added H2, an order of magnitude higher number of peridotite rock-associated taxa assimilated 13C-bicarbonate, 13C-acetate, and 13C-formate compared to taxa that were not associated with peridotites. Collectively, these findings indicate that the unique geochemical nature of the peridotite-hosted ecosystem has selected for H2-metabolizing, rock-associated taxa that can increase anabolism under high H2 concentrations. Because ultramafic rocks are widespread in slow-, and ultraslow-spreading oceanic lithosphere, continental margins, and subduction zones where H2 is formed in copious amounts, the link between H2 and carbon assimilation demonstrated here may be widespread within these geological settings.


Assuntos
Hidrogênio , Microbiota , Carbono , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
6.
Sci Adv ; 7(48): eabj2515, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826248

RESUMO

Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system's thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.

7.
Nature ; 579(7798): 250-255, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161389

RESUMO

The lithified lower oceanic crust is one of Earth's last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth1-3 or to meet basal power requirements4 during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth's lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm3). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Metabolismo Energético/genética , Sedimentos Geológicos/microbiologia , Microbiota/genética , Oceanos e Mares , Ciclo do Carbono/genética , Perfilação da Expressão Gênica
8.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180428, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902334

RESUMO

A series of three laboratory experiments were conducted to investigate how pH affects reaction pathways and rates during serpentinization. Two experiments were conducted under strongly alkaline conditions using olivine as reactant at 200 and 230°C, and the results were compared with previous studies performed using the same reactants and methods at more neutral pH. For both experiments, higher pH resulted in more rapid serpentinization of the olivine and generation of larger amounts of H2 for comparable reaction times. Proportionally greater amounts of Fe were partitioned into brucite and chrysotile and less into magnetite in the experiments conducted at higher pH. In a third experiment, alkaline fluids were injected into an ongoing experiment containing olivine and orthopyroxene to raise the pH from circumneutral to strongly alkaline conditions. Increasing the pH of the olivine-orthopyroxene experiment resulted in an immediate and steep increase in H2 production, and led to far more extensive reaction of the primary minerals compared to a similar experiment conducted under more neutral conditions. The results suggest that the development of strongly alkaline conditions in actively serpentinizing systems promotes increased rates of reaction and H2 production, enhancing the flux of H2 available to support biological activity in these environments. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.

9.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180431, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902341

RESUMO

We examined the mineralogical, chemical and isotopic compositions of secondary fluid inclusions in olivine-rich rocks from two active serpentinization systems: the Von Damm hydrothermal field (Mid-Cayman Rise) and the Zambales ophiolite (Philippines). Peridotite, troctolite and gabbroic rocks in these systems contain abundant CH4-rich secondary inclusions in olivine, with less abundant inclusions in plagioclase and clinopyroxene. Olivine-hosted secondary inclusions are chiefly composed of CH4 and minor H2, in addition to secondary minerals including serpentine, brucite, magnetite and carbonates. Secondary inclusions in plagioclase are dominated by CH4 with variable amounts of H2 and H2O, while those in clinopyroxene contain only CH4. We determined hydrocarbon abundances and stable carbon isotope compositions by crushing whole rocks and analysing the released volatiles using isotope ratio monitoring-gas chromatography mass spectrometry. Bulk rock gas analyses yielded appreciable quantities of CH4 and C2H6 in samples from Cayman (4-313 nmol g-1 CH4 and 0.02-0.99 nmol g-1 C2H6), with lesser amounts in samples from Zambales (2-37 nmol g-1 CH4 and 0.004-0.082 nmol g-1 C2H6). Mafic and ultramafic rocks at Cayman exhibit δ13CCH4 values of -16.7‰ to -4.4‰ and δ13CC2H6 values of -20.3‰ to +0.7‰. Ultramafic rocks from Zambales exhibit δ13CCH4 values of -12.4‰ to -2.8‰ and δ13CC2H6 values of -1.2‰ to -0.9‰. Similarities in the carbon isotopic compositions of CH4 and C2H6 in plutonic rocks, Von Damm hydrothermal fluids, and Zambales gas seeps suggest that leaching of fluid inclusions may provide a significant contribution of abiotic hydrocarbons to deep-sea vent fluids and ophiolite-hosted gas seeps. Isotopic compositions of CH4 and C2H6 from a variety of hydrothermal fields hosted in olivine-rich rocks that are similar to those in Von Damm vent fluids further support the idea that a significant portion of abiotic hydrocarbons in ultramafic-influenced vent fluids is derived from fluid inclusions. This article is part of a discussion meeting issue 'Serpentinite in the Earth system'.

10.
Proc Natl Acad Sci U S A ; 116(36): 17666-17672, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427518

RESUMO

The conditions of methane (CH4) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H2) and CH4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH4(g) and H2(g) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H2O. The generation of molecular H2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH4 Once formed, CH4(g) and H2(g) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH4 and H2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system.

11.
Ann Rev Mar Sci ; 10: 315-343, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28853997

RESUMO

Over the last four decades, more than 500 sites of seafloor hydrothermal venting have been identified in a range of tectonic environments. These vents represent the seafloor manifestation of hydrothermal convection of seawater through the permeable oceanic basement that is driven by a subsurface heat source. Hydrothermal circulation has fundamental effects on the transfer of heat and mass from the lithosphere to the hydrosphere, the composition of seawater, the physical and chemical properties of the oceanic basement, and vent ecosystems at and below the seafloor. In this review, we compare and contrast the vent fluid chemistry from hydrothermal fields in a range of tectonic settings to assess the relative roles of fluid-mineral equilibria, phase separation, magmatic input, seawater entrainment, and sediment cover in producing the observed range of fluid compositions. We focus particularly on hydrothermal activity in those tectonic environments (e.g., mid-ocean ridge detachment faults, back-arc basins, and island arc volcanoes) where significant progress has been made in the last decade in documenting the variations in vent fluid composition.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Fontes Hidrotermais/análise , Água do Mar/química , Ecossistema , Temperatura Alta , Fontes Hidrotermais/química , Oceanos e Mares
12.
Nat Commun ; 8: 16107, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706268

RESUMO

The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth's surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H2O activity decreases.

13.
Proc Natl Acad Sci U S A ; 112(39): 12036-41, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26324888

RESUMO

Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Fósseis , Fontes Hidrotermais , Microbiota , Água do Mar/química , Oceano Atlântico , Biomassa , Carbonato de Cálcio/química , Carbono/química , Cromatografia Líquida de Alta Pressão , Hidróxido de Magnésio/química , Espectrometria de Massas , Paleontologia , Água do Mar/microbiologia , Temperatura
14.
ISME J ; 9(11): 2503-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25909974

RESUMO

Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.


Assuntos
Carbonato de Cálcio/química , Água Doce/microbiologia , Bactérias Aeróbias Gram-Negativas/genética , Bactérias Redutoras de Enxofre/genética , Microbiologia da Água , Áreas Alagadas , Compostos de Cálcio , Gammaproteobacteria/genética , Massachusetts , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Sulfetos , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA