Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514782

RESUMO

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Locos de Características Quantitativas/genética , Variação Genética/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
2.
Neurology ; 102(7): e209223, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502899

RESUMO

BACKGROUND AND OBJECTIVES: Molecular omics studies have identified proteins related to cognitive resilience but unrelated to Alzheimer disease and Alzheimer disease-related dementia (AD/ADRD) pathologies. Posttranslational modifications of proteins with glycans can modify protein function. In this study, we identified glycopeptiforms associated with cognitive resilience. METHODS: We studied brains from adults with annual cognitive testing with postmortem indices of 10 AD/ADRD pathologies and proteome-wide data from dorsal lateral prefrontal cortex (DLPFC). We quantified 11, 012 glycopeptiforms from DLPFC using liquid chromatography with tandem mass spectrometry. We used linear mixed-effects models to identify glycopeptiforms associated with cognitive decline correcting for multiple comparisons (p < 5 × 10-6). Then, we regressed out the effect of AD/ADRD pathologies to identify glycopeptiforms that may provide cognitive resilience. RESULTS: We studied 366 brains, average age at death 89 years, and 70% female with no cognitive impairment = 152, mild cognitive impairment = 93, and AD = 121 cognitive status at death. In models adjusting for age, sex and education, 11 glycopeptiforms were associated with cognitive decline. In further modeling, 8 of these glycopeptiforms remained associated with cognitive decline after adjusting for AD/ADRD pathologies: NPTX2a (Est., 0.030, SE, 0.005, p = 1 × 10-4); NPTX2b (Est.,0.019, SE, 0.005, p = 2 × 10-4) NECTIN1(Est., 0.029, SE, 0.009, p = 9 × 10-4), NPTX2c (Est., 0.015, SE, 0.004, p = 9 × 10-4), HSPB1 (Est., -0.021, SE, 0.006, p = 2 × 10-4), PLTP (Est., -0.027, SE, 0.009, p = 4.2 × 10-3), NAGK (Est., -0.027, SE, 0.008, p = 1.4 × 10-3), and VAT1 (Est., -0.020, SE, 0.006, p = 1.1 × 10-3). Higher levels of 4 resilience glycopeptiforms derived through glycosylation were associated with slower decline and higher levels of 4 derived through glycation were related to faster decline. Together, these 8 glycopeptiforms accounted for an additional 6% of cognitive decline over the 33% accounted for the 10 brain pathologies and demographics. All 8 resilience glycopeptiforms remained associated with cognitive decline after adjustments for the expression level of their corresponding protein. Exploratory gene ontology suggested that molecular mechanisms of glycopeptiforms associated with cognitive decline may involve metabolic pathways including pyruvate and NADH pathways and highlighted the importance of molecular mechanisms involved in glucose metabolism. DISCUSSION: Glycopeptiforms in aging brains may provide cognitive resilience. Targeting these glycopeptiforms may lead to therapies that maintain cognition through resilience.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Resiliência Psicológica , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Proteoma/metabolismo , Disfunção Cognitiva/metabolismo , Encéfalo/patologia , Cognição , Glicoproteínas/metabolismo
3.
Schizophr Res Cogn ; 36: 100307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38486791

RESUMO

Deficits in facial identity recognition and its association with poor social functioning are well documented in schizophrenia, but none of these studies have assessed the role of the body in these processes. Recent research in healthy populations shows that the body is also an important source of information in identity recognition, and the current study aimed to thoroughly examine identity recognition from both faces and bodies in schizophrenia. Sixty-five individuals with schizophrenia and forty-nine healthy controls completed three conditions of an identity matching task in which they attempted to match unidentified persons in unedited photos of faces and bodies, edited photos showing faces only, or edited photos showing bodies only. Results revealed global deficits in identity recognition in individuals with schizophrenia (ηp2 = 0.068), but both groups showed better recognition from bodies alone as compared to faces alone (ηp2 = 0.573), suggesting that the ability to extract useful information from bodies when identifying persons may remain partially preserved in schizophrenia. Further research is necessary to understand the relationship between face/body processing, identity recognition, and functional outcomes in individuals with schizophrenia-spectrum disorders.

4.
Neurology ; 102(1): e207816, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165375

RESUMO

BACKGROUND AND OBJECTIVES: Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. METHODS: Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. RESULTS: We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10-6; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10-1; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10-7). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. DISCUSSION: This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.


Assuntos
Memória Episódica , Neuropeptídeos , Resiliência Psicológica , Feminino , Humanos , Idoso de 80 Anos ou mais , Masculino , Proteoma , Proteômica , Cognição , Proteínas Ligadas por GPI
5.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050142

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Cognição , Neurônios/metabolismo , RNA , Splicing de RNA/genética , Proteínas tau/metabolismo
6.
Biol Psychiatry ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38141910

RESUMO

BACKGROUND: Depression, a common psychiatric illness and global public health problem, remains poorly understood across different life stages, which hampers the development of novel treatments. METHODS: To identify new candidate genes for therapeutic development, we performed differential gene expression analysis of single-nucleus RNA sequencing data from the dorsolateral prefrontal cortex of older adults (n = 424) in relation to antemortem depressive symptoms. Additionally, we integrated genome-wide association study results for depression (n = 500,199) along with genetic tools for inferring the expression of 14,048 unique genes in 7 cell types and 52 cell subtypes to perform a transcriptome-wide association study of depression followed by Mendelian randomization. RESULTS: Our single-nucleus transcriptome-wide association study analysis identified 68 candidate genes for depression and showed the greatest number being in excitatory and inhibitory neurons. Of the 68 genes, 53 were novel compared to previous studies. Notably, gene expression in different neuronal subtypes had varying effects on depression risk. Traits with high genetic correlations with depression, such as neuroticism, shared more transcriptome-wide association study genes than traits that were not highly correlated with depression. Complementing these analyses, differential gene expression analysis across 52 neocortical cell subtypes showed that genes such as KCNN2, SCAI, WASF3, and SOCS6 were associated with late-life depressive symptoms in specific cell subtypes. CONCLUSIONS: These 2 sets of analyses illustrate the utility of large single-nucleus RNA sequencing data both to uncover genes whose expression is altered in specific cell subtypes in the context of depressive symptoms and to enhance the interpretation of well-powered genome-wide association studies so that we can prioritize specific susceptibility genes for further analysis and therapeutic development.

7.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036535

RESUMO

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Fatores de Risco
8.
Schizophr Bull Open ; 4(1): sgad012, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38026054

RESUMO

The US Food and Drug Agency (FDA) requires clinical trials targeting cognitive impairment associated with schizophrenia (CIAS) to demonstrate the functional relevance of cognitive improvements by employing a functional co-primary measure. Although quantitative evidence supports the suitability of the Virtual Reality Functional Capacity Assessment Tool (VRFCAT) for this purpose, FDA guidelines for qualification of clinical outcome assessments require evidence of content validity, defined as qualitative evidence that key stakeholders view the measure as relevant and important. To collect this important qualitative data, semi-structured interviews were conducted with outpatients with schizophrenia (n = 24), caregivers (n = 12), and professional peer support specialists (n = 12) to elicit their views about the definition and importance of functional independence, the importance of the functional domains assessed by the VRFCAT (meal planning, using transportation, handling money, shopping), and the relevance of the VRFCAT tasks to these domains. Qualitative thematic analyses revealed consistent themes across groups in defining functional independence, including performing instrumental self-care, financial, and social tasks; making decisions autonomously; and not depending on others to carry out daily activities. There were, however, notable differences in their views regarding the importance of and barriers to functional independence. All groups viewed the VRFCAT as assessing skill domains that are central to independent functioning and, with some minor differences, the VRFCAT tasks were viewed as relevant and meaningful examples of the domains. These qualitative results provide converging evidence that key stakeholders view the VRFCAT as a content-valid measure.

9.
Schizophr Res ; 261: 194-202, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797360

RESUMO

BACKGROUND: Some research suggests that schizotypal and autistic traits can produce opposing effects on the mentalizing domain of social cognition. Although such findings support a diametrical model proposing that psychotic and autistic traits represent opposite extremes of the social brain continuum, results from recent studies have been more inconsistent, and the applicability of this model to other social cognition domains remains unclear. To test the diametrical model more broadly, this study examined the interactions between schizotypal and autistic traits on emotion recognition and social functioning. METHOD: A total of 791 participants recruited from the general population self-reported schizotypal traits using the Schizotypal Personality Questionnaire-Brief Revised (SPQ-BR) and autistic traits using the Broad Autism Phenotype Questionnaire (BAPQ). Participants also completed the Emotion Recognition 40 task and the Specific Levels of Functioning (SLOF) scale. RESULTS: The SPQ subscales of interpersonal relationships and disorganized symptoms interacted significantly with social BAP on overall emotion recognition performance and the accuracy of identifying neutral faces. Supporting the diametrical model, elevated levels of both schizotypal and autistic traits contributed to higher emotion recognition accuracy compared to elevations on only one trait. For social functioning, however, the diametrical model was not supported. A main effect was found such that higher interpersonal relationship difficulties on SPQ predicted lower work skills on SLOF, and higher levels of both schizotypal and autistic traits combined to produce even lower social functioning. CONCLUSIONS: These findings suggest that the diametrical model may be more relevant to social cognition than to social functioning.


Assuntos
Transtorno Autístico , Transtorno da Personalidade Esquizotípica , Humanos , Transtorno Autístico/psicologia , Interação Social , Transtorno da Personalidade Esquizotípica/psicologia , Emoções , Ajustamento Social , Inquéritos e Questionários
10.
Front Psychiatry ; 14: 1231750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850104

RESUMO

Numerous studies have now implicated a role for inflammation in schizophrenia. However, many aspects surrounding this aspect of the disease are still controversial. This controversy has been driven by conflicting evidence on the role of both pro-and anti-inflammatory factors and by often contentious findings concerning cytokine and immune cell profiles in the central nervous system and periphery. Current evidence supports the point that interleukin-6 is elevated in CSF, but does not support activation of microglia, resident macrophage-like cells in the brain. Furthermore, the mechanisms involving transit of the peripheral immune system factors across the blood brain barrier to central parenchyma have still not been completely elucidated. This process appears to involve perivascular macrophages and accompanying dendritic cells retained in the parenchyma by the chemokine and cytokine composition of the surrounding milieu. In addition, a number of studies have shown that this can be modulated by infection with viruses such as herpes simplex virus type I which may disrupt antigen presentation in the perivascular space, with long-lasting consequences. In this review article, we discuss the role of inflammation and viral infection as potential disease modifiers in schizophrenia. The primary viral hit may occur in the fetus in utero, transforming the immune response regulatory T-cells or the virus may secondarily remain latent in immune cells or neurons and modify further immune responses in the developing individual. It is hoped that unraveling this pathway further and solidifying our understanding of the pathophysiological mechanisms involved will pave the way for future studies aimed at identification and implementation of new biomarkers and drug targets. This may facilitate the development of more effective personalized therapies for individuals suffering with schizophrenia.

11.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527018

RESUMO

MOTIVATION: Droplet-based single-cell RNA sequencing (scRNA-seq) is widely used in biomedical research for interrogating the transcriptomes of single cells on a large scale. Pooling and processing cells from different samples together can reduce costs and batch effects. To pool cells, they are often first labeled with hashtag oligonucleotides (HTOs). These HTOs are sequenced alongside the cells' RNA in the droplets and subsequently used to computationally assign each droplet to its sample of origin, a process referred to as demultiplexing. Accurate demultiplexing is crucial but can be challenging due to background HTOs, low-quality cells/cell debris, and multiplets. RESULTS: A new demultiplexing method based on negative binomial regression mixture models is introduced. The method, called demuxmix, implements two significant improvements. First, demuxmix's probabilistic classification framework provides error probabilities for droplet assignments that can be used to discard uncertain droplets and inform about the quality of the HTO data and the success of the demultiplexing process. Second, demuxmix utilizes the positive association between detected genes in the RNA library and HTO counts to explain parts of the variance in the HTO data resulting in improved droplet assignments. The improved performance of demuxmix compared with existing demultiplexing methods is assessed using real and simulated data. Finally, the feasibility of accurately demultiplexing experimental designs where non-labeled cells are pooled with labeled cells is demonstrated. AVAILABILITY AND IMPLEMENTATION: R/Bioconductor package demuxmix (https://doi.org/doi:10.18129/B9.bioc.demuxmix).


Assuntos
Oligonucleotídeos , Software , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , RNA/genética , Perfilação da Expressão Gênica/métodos
12.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333223

RESUMO

Alzheimer's disease (AD) heritability is enriched in glial genes, but how and when cell-type-specific genetic risk contributes to AD remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets. In an autopsy dataset spanning all stages of AD (n=1,457), astrocytic (Ast) ADPRS was associated with both diffuse and neuritic Aß plaques, while microglial (Mic) ADPRS was associated with neuritic Aß plaques, microglial activation, tau, and cognitive decline. Causal modeling analyses further clarified these relationships. In an independent neuroimaging dataset of cognitively unimpaired elderly (n=2,921), Ast-ADPRS were associated with Aß, and Mic-ADPRS was associated with Aß and tau, showing a consistent pattern with the autopsy dataset. Oligodendrocytic and excitatory neuronal ADPRSs were associated with tau, but only in the autopsy dataset including symptomatic AD cases. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.

13.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131588

RESUMO

Background: Myeloid cells, including monocytes, macrophages, microglia, dendritic cells and neutrophils are a part of innate immunity, playing a major role in orchestrating innate and adaptive immune responses. Microglia are the resident myeloid cells of the central nervous system, and many Alzheimer's disease (AD) risk loci are found in or near genes that are highly or sometimes uniquely expressed in myeloid cells. Similarly, inflammatory bowel disease (IBD) loci are also enriched for genes expressed by myeloid cells. However, the extent to which there is overlap between the effects of AD and IBD susceptibility loci in myeloid cells remains poorly described, and the substantial IBD genetic maps may help to accelerate AD research. Methods: Here, we leveraged summary statistics from large-scale genome-wide association studies (GWAS) to investigate the causal effect of IBD (including ulcerative colitis and Crohn's disease) variants on AD and AD endophenotypes. Microglia and monocyte expression Quantitative Trait Locus (eQTLs) were used to examine the functional consequences of IBD and AD risk variants enrichment in two different myeloid cell subtypes. Results: Our results showed that, while PTK2B is implicated in both diseases and both sets of risk loci are enriched for myeloid genes, AD and IBD susceptibility loci largely implicate distinct sets of genes and pathways. AD loci are significantly more enriched for microglial eQTLs than IBD. We also found that genetically determined IBD is associated with a lower risk of AD, which may driven by a negative effect on the accumulation of neurofibrillary tangles (beta=-1.04, p=0.013). In addition, IBD displayed a significant positive genetic correlation with psychiatric disorders and multiple sclerosis, while AD showed a significant positive genetic correlation with amyotrophic lateral sclerosis. Conclusion: To our knowledge, this is the first study to systematically contrast the genetic association between IBD and AD, our findings highlight a possible genetically protective effect of IBD on AD even if the majority of effects on myeloid cell gene expression by the two sets of disease variants are distinct. Thus, IBD myeloid studies may not help to accelerate AD functional studies, but our observation reinforces the role of myeloid cells in the accumulation of tau proteinopathy and provides a new avenue for discovering a protective factor.

14.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034737

RESUMO

Background: Depression is a common psychiatric illness and global public health problem. However, our limited understanding of the biological basis of depression has hindered the development of novel treatments and interventions. Methods: To identify new candidate genes for therapeutic development, we examined single-nucleus RNA sequencing (snucRNAseq) data from the dorsolateral prefrontal cortex (N=424) in relation to ante-mortem depressive symptoms. To complement these direct analyses, we also used genome-wide association study (GWAS) results for depression (N=500,199) along with genetic tools for inferring the expression of 22,159 genes in 7 cell types and 55 cell subtypes to perform transcriptome-wide association studies (TWAS) of depression followed by Mendelian randomization (MR). Results: Our single-nucleus TWAS analysis identified 71 causal genes in depression that have a role in specific neocortical cell subtypes; 59 of 71 genes were novel compared to previous studies. Depression TWAS genes showed a cell type specific pattern, with the greatest enrichment being in both excitatory and inhibitory neurons as well as astrocytes. Gene expression in different neuron subtypes have different directions of effect on depression risk. Compared to lower genetically correlated traits (e.g. body mass index) with depression, higher correlated traits (e.g., neuroticism) have more common TWAS genes with depression. In parallel, we performed differential gene expression analysis in relation to depression in 55 cortical cell subtypes, and we found that genes such as ANKRD36, MADD, TAOK3, SCAI and CHUK are associated with depression in specific cell subtypes. Conclusions: These two sets of analyses illustrate the utility of large snucRNAseq data to uncover both genes whose expression is altered in specific cell subtypes in the context of depression and to enhance the interpretation of well-powered GWAS so that we can prioritize specific susceptibility genes for further analysis and therapeutic development.

15.
Psychol Med ; 53(15): 7087-7095, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37016791

RESUMO

BACKGROUND: Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms. METHODS: We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS: Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance (p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION: We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.


Assuntos
Doenças Neuroinflamatórias , Esquizofrenia , Feminino , Humanos , Masculino , Antivirais/uso terapêutico , Projetos Piloto , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Valaciclovir , Método Duplo-Cego
16.
bioRxiv ; 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36865313

RESUMO

SORL1 is strongly implicated in the pathogenesis of Alzheimer's disease (AD) through human genetic studies that point to an association of reduced SORL1 levels with higher risk for AD. To interrogate the role(s) of SORL1 in human brain cells, SORL1 null iPSCs were generated, followed by differentiation to neuron, astrocyte, microglia, and endothelial cell fates. Loss of SORL1 led to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. Intriguingly, SORL1 loss led to a dramatic neuron-specific reduction in APOE levels. Further, analyses of iPSCs derived from a human aging cohort revealed a neuron-specific linear correlation between SORL1 and APOE RNA and protein levels, a finding validated in human post-mortem brain. Pathway analysis implicated intracellular transport pathways and TGF- ß/SMAD signaling in the function of SORL1 in neurons. In accord, enhancement of retromer-mediated trafficking and autophagy rescued elevated phospho-tau observed in SORL1 null neurons but did not rescue APOE levels, suggesting that these phenotypes are separable. Stimulation and inhibition of SMAD signaling modulated APOE RNA levels in a SORL1-dependent manner. These studies provide a mechanistic link between two of the strongest genetic risk factors for AD.

17.
Rofo ; 195(5): 416-425, 2023 05.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-36928520

RESUMO

PURPOSE: We examined ways to improve energy efficiency in radiology by using regenerative and energy-friendly technology in the construction and operation of two radiological facilities. METHOD: In the years 2009 to 2010 an energy-optimized medical center with different clinical disciplines and a radiology practice was built. We used regenerative energy production (photovoltaic system, 29.92 kWp). A heat exchanger was also used to regain thermal energy to support heating of the building, thereby reducing cooling energy consumption. The practice operates a 1.5 T MRI machine and a computed tomography scanner. Derived from our experiences, an open MRI practice was built nearby in 2019. The building was constructed using an energy-saving technique. A photovoltaic system with a 10 kWh lithium-ion battery was installed. The practice operates a 0.35 T open MRI machine. RESULTS: Energy optimization of the medical center resulted in an annual CO2 reduction of about 54 % from 153 146 to 70 631 kg/year. Energy costs were reduced by 32.5 %. The heat exchanger proved to be highly efficient. For the open MRI practice, energy consumption in 2020 was 38 810 kWh: 14 800 kWh for the heating/cooling of the building, and 24 010 kWh for the imaging systems and IT. Net energy production of the solar array was 30 846 kWh. Net energy consumption for the whole project was 8397 kWh/year. CO2 production of the practice was 1839 kg CO2/year. CONCLUSION: Regenerative energy, energy recuperation, and use of energy-efficient imaging systems can yield considerable improvement of the CO2 footprint in radiology practices. KEY POINTS: · Radiology, in particular MRI, has high energy consumption.. · A heat exchanger can regain thermal energy from MRI machines to support room heating.. · Low-field MRI with permanent magnets consumes far less energy.. · Energy optimization results in less CO2 production and lower operation costs.. CITATION FORMAT: · Klein HM. A New Approach to the Improvement of Energy Efficiency in Radiology Practices. Fortschr Röntgenstr 2023; 195: 416 - 425.


Assuntos
Conservação de Recursos Energéticos , Radiologia , Dióxido de Carbono , Radiografia , Imageamento por Ressonância Magnética
18.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993746

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.

19.
bioRxiv ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36747615

RESUMO

Motivation: Droplet-based single-cell RNA sequencing (scRNA-seq) is widely used in biomedical research to interrogate the transcriptomes of single cells on a large scale. Pooling and processing cells from different samples together can reduce costs and batch effects. In order to pool cells, cells are often first labeled with hashtag oligonucleotides (HTOs). These HTOs are sequenced along with the cells' RNA in the droplets and are subsequently used to computationally assign each droplet to its sample of origin, which is referred to as demultiplexing. Accurate demultiplexing is crucial and can be challenging due to background HTOs, low-quality cells/cell debris, and multiplets. Results: A new demultiplexing method, demuxmix, based on negative binomial regression mixture models is introduced. The method implements two significant improvements. First, demuxmix's probabilistic classification framework provides error probabilities for droplet assignments that can be used to discard uncertain droplets and inform about the quality of the HTO data and the demultiplexing success. Second, demuxmix utilizes the positive association between detected genes in the RNA library and HTO counts to explain parts of the variance in the HTO data resulting in improved droplet assignments. The improved performance of demuxmix compared to existing demultiplexing methods is assessed on real and simulated data. Finally, the feasibility of accurately demultiplexing experimental designs where non-labeled cells are pooled with labeled cells is demonstrated. Availability: R/Bioconductor package demuxmix ( https://doi.org/doi:10.18129/B9.bioc.demuxmix ).

20.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747803

RESUMO

The heterogeneity of the older population suggests the existence of subsets of individuals which share certain brain molecular features and respond differently to risk factors for Alzheimer's disease, but this population structure remains poorly defined. Here, we performed an unsupervised clustering of individuals with multi-region brain transcriptomes to assess whether a broader approach, simultaneously considering data from multiple regions involved in cognition would uncover such subsets. We implemented a canonical correlation-based analysis in a Discovery cohort of 459 participants from two longitudinal studies of cognitive aging that have RNA sequence profiles in three brain regions. 690 additional participants that have data in only one or two of these regions were used in the Replication effort. These clustering analyses identified two meta-clusters, MC-1 and MC-2. The two sets of participants differ primarily in their trajectories of cognitive decline, with MC-2 having a delay of 3 years to the median age of incident dementia. This is due, in part, to a greater impact of tau pathology on neuronal chromatin architecture and to broader brain changes including greater loss of white matter integrity in MC-1. Further evidence of biological differences includes a significantly larger impact of APOEε4 risk on cognitive decline in MC-1. These findings suggest that our proposed population structure captures an aspect of the more distributed molecular state of the aging brain that either enhances the effect of risk factors in MC-1 or of protective effects in MC-2. These observations may inform the design of therapeutic development efforts and of trials as both become increasingly more targeted molecularly. One Sentence Summary: There are two types of aging brains, with one being more vulnerable to APOEε4 and subsequent neuronal dysfunction and cognitive loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA