Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
NPJ Precis Oncol ; 6(1): 69, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202909

RESUMO

Widespread, comprehensive sequencing of patient tumors has facilitated the usage of precision medicine (PM) drugs to target specific genomic alterations. Therapeutic clinical trials are necessary to test new PM drugs to advance precision medicine, however, the abundance of patient sequencing data coupled with complex clinical trial eligibility has made it challenging to match patients to PM trials. To facilitate enrollment onto PM trials, we developed MatchMiner, an open-source platform to computationally match genomically profiled cancer patients to PM trials. Here, we describe MatchMiner's capabilities, outline its deployment at Dana-Farber Cancer Institute (DFCI), and characterize its impact on PM trial enrollment. MatchMiner's primary goals are to facilitate PM trial options for all patients and accelerate trial enrollment onto PM trials. MatchMiner can help clinicians find trial options for an individual patient or provide trial teams with candidate patients matching their trial's eligibility criteria. From March 2016 through March 2021, we curated 354 PM trials containing a broad range of genomic and clinical eligibility criteria and MatchMiner facilitated 166 trial consents (MatchMiner consents, MMC) for 159 patients. To quantify MatchMiner's impact on trial consent, we measured time from genomic sequencing report date to trial consent date for the 166 MMC compared to trial consents not facilitated by MatchMiner (non-MMC). We found MMC consented to trials 55 days (22%) earlier than non-MMC. MatchMiner has enabled our clinicians to match patients to PM trials and accelerated the trial enrollment process.

3.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996873

RESUMO

Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Sequência de Aminoácidos , Apoptose , Flores/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Inflorescência , Meristema/genética , Meristema/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Chem Commun (Camb) ; 55(67): 9975-9978, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31367706

RESUMO

A bistable [2]rotaxane containing a halogen bonding benzimidazole-iodotriazole station directly conjugated to a naphthalimide station axle component is demonstrated to undergo macrocycle shuttling translocation only upon both protonation and chloride anion recognition. A naked-eye detectable colour response results from the co-conformational change of the host structure.

5.
Chemistry ; 25(12): 3125-3130, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30624821

RESUMO

Whilst the exploitation of interlocked host frameworks for anion recognition is widely established, examples incorporating halogen bond donor groups are still relatively rare. Through the integration of a novel tetra(iodotriazole)-pyridinium motif into macrocycle and axle components, a family of halogen bonding catenane and rotaxanes are constructed for anion recognition studies in a competitive aqueous-organic solvent mixture. Importantly, the degree of anion selectivity displayed is dictated by the topological nature and charged state of the respective interlocked host cavity. All the interlocked hosts exhibit iodide anion selectivity over other halides and sulfate, with the level of discrimination being the greatest with the mono-cationic rotaxane. Arising from greater electrostatic interactions working in tandem with halogen bonding and hydrogen bonding, the di-cationic rotaxane displays stronger anion association at the expense of a relatively lower degree of iodide selectivity.

6.
G3 (Bethesda) ; 8(11): 3583-3592, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30194092

RESUMO

Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1 Our method provides a quick, simple way to clone genes in maize.


Assuntos
Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Zea mays/genética , Clonagem Molecular , Mutação , Polimorfismo de Nucleotídeo Único
7.
J Am Chem Soc ; 138(26): 8301-8, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27299473

RESUMO

Gated ion transport across biological membranes is an intrinsic process regulated by protein channels. Synthetic anion carriers (anionophores) have potential applications in biological research; however, previously reported examples are mostly nonspecific, capable of mediating both electrogenic and electroneutral (nonelectrogenic) transport processes. Here we show the transmembrane Cl(-) transport studies of synthetic phenylthiosemicarbazones mimicking the function of acid-sensing (proton-gated) ion channels. These anionophores have remarkable pH-switchable transport properties with up to 640-fold increase in transport efficacy on going from pH 7.2 to 4.0. This "gated" process is triggered by protonation of the imino nitrogen and concomitant conformational change of the anion-binding thiourea moiety from anti to syn. By using a combination of two cationophore-coupled transport assays, with either monensin or valinomycin, we have elucidated the fundamental transport mechanism of phenylthiosemicarbazones which is shown to be nonelectrogenic, inseparable H(+)/Cl(-) cotransport. This study demonstrates the first examples of pH-switchable nonelectrogenic anion transporters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA