Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895369

RESUMO

Providencia alcalifaciens is a Gram-negative bacterium found in a wide variety of water and land environments and organisms. It has been isolated as part of the gut microbiome of animals and insects, as well as from stool samples of patients with diarrhea. Specific P. alcalifaciens strains encode gene homologs of virulence factors found in other pathogenic members of the same Enterobacterales order, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are also pathogenic determinants in P. alcalifaciens is not known. Here we have used P. alcalifaciens 205/92, a clinical isolate, with in vitro and in vivo infection models to investigate P. alcalifaciens -host interactions at the cellular level. Our particular focus was the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS 1b is widespread in Providencia spp. and encoded on the chromosome. T3SS 1a is encoded on a large plasmid that is present in a subset of P. alcalifaciens strains, which are primarily isolates from diarrheal patients. Using a combination of electron and fluorescence microscopy and gentamicin protection assays we show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, rapidly lyses its internalization vacuole and proliferates in the cytosol. This triggers caspase-4 dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS 1a in entry, vacuole lysis and cytosolic proliferation is host-cell type specific, playing a more prominent role in human intestinal epithelial cells as compared to macrophages. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa, inducing mild epithelial damage with negligible fluid accumulation. No overt role for T3SS 1a or T3SS 1b was seen in the calf infection model. However, T3SS 1b was required for the rapid killing of Drosophila melanogaster . We propose that the acquisition of two T3SS by horizontal gene transfer has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.

2.
Sci Rep ; 13(1): 10412, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369732

RESUMO

Primary tissue-derived epithelial organoids are a physiologically relevant in vitro intestinal model that have been implemented for both basic research and drug development applications. The existing method of culturing intestinal organoids in surface-attached native extracellular matrix (ECM) hydrogel domes is not readily amenable to large-scale culture and contributes to culture heterogeneity. We have developed a method of culturing intestinal organoids within suspended basement membrane extract (BME) hydrogels of various geometries, which streamlines the protocol, increases the scalability, enables kinetic sampling, and improves culture uniformity without specialized equipment or additional expertise. We demonstrate the compatibility of this method with multiple culture formats, and provide examples of suspended BME hydrogel organoids in downstream applications: implementation in a medium-throughput drug screen and generation of Transwell monolayers for barrier evaluation. The suspended BME hydrogel culture method will allow intestinal organoids, and potentially other organoid types, to be used more widely and at higher throughputs than previously possible.


Assuntos
Hidrogéis , Intestinos , Organoides , Matriz Extracelular , Técnicas de Cultura de Células/métodos
3.
Methods Mol Biol ; 2692: 209-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365470

RESUMO

Establishment of an intracellular niche within mammalian cells is key to the pathogenesis of the gastrointestinal bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium). Here we will describe how to study the internalization of S. Typhimurium into human epithelial cells using the gentamicin protection assay. The assay takes advantage of the relatively poor penetration of gentamicin into mammalian cells; internalized bacteria are effectively protected from its antibacterial actions. A second assay, the chloroquine (CHQ) resistance assay, can be used to determine the proportion of internalized bacteria that have lysed or damaged their Salmonella-containing vacuole and are therefore residing within the cytosol. Its application to the quantification of cytosolic S. Typhimurium in epithelial cells will also be presented. Together, these protocols provide an inexpensive, rapid, and sensitive quantitative measure of bacterial internalization and vacuole lysis by S. Typhimurium.


Assuntos
Salmonella enterica , Animais , Humanos , Vacúolos/microbiologia , Células Epiteliais/microbiologia , Salmonella typhimurium , Gentamicinas/farmacologia , Proteínas de Bactérias , Mamíferos
4.
Adv Biol (Weinh) ; 7(12): e2200333, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36932900

RESUMO

Representation of humans from diverse backgrounds in the drug development process is key to advancing health equity, and while clinical trial design has recently made strides toward greater inclusivity, preclinical drug development has struggled to make those same gains. One barrier to inclusion is the current lack of robust and established in vitro model systems that simultaneously capture the complexity of human tissues while representing patient diversity. Here, the use of primary human intestinal organoids as a mechanism to advance inclusive preclinical research is proposed. This in vitro model system not only recapitulates tissue functions and disease states, but also retains the genetic identity and epigenetic signatures of the donors from which they are derived. Thus, intestinal organoids are an ideal in vitro prototype for capturing human diversity. In this perspective, the authors call for an industry-wide effort to leverage intestinal organoids as a starting point to actively and intentionally incorporate diversity into preclinical drug programs.


Assuntos
Intestinos , Organoides , Humanos
5.
PLoS Biol ; 17(5): e3000231, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048876

RESUMO

Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.


Assuntos
Mucosa Gástrica/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Microscopia Confocal/métodos , Animais , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Contagem de Colônia Microbiana , Feminino , Mucosa Gástrica/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Especificidade da Espécie , Linfócitos T/efeitos dos fármacos
6.
mBio ; 8(6)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208746

RESUMO

The Salmonella invasion-associated type III secretion system (T3SS1) is an essential virulence factor required for entry into nonphagocytic cells and consequent uptake into a Salmonella-containing vacuole (SCV). While Salmonella is typically regarded as a vacuolar pathogen, a subset of bacteria escape from the SCV in epithelial cells and eventually hyperreplicate in the cytosol. T3SS1 is downregulated following bacterial entry into mammalian cells, but cytosolic Salmonella cells are T3SS1 induced, suggesting prolonged or resurgent activity of T3SS1 in this population. In order to investigate the postinternalization contributions of T3SS1 to the Salmonella infectious cycle in epithelial cells, we bypassed its requirement for bacterial entry by tagging the T3SS1-energizing ATPase InvC at the C terminus with peptides that are recognized by bacterial tail-specific proteases. This caused a dramatic increase in InvC turnover which rendered even assembled injectisomes inactive. Bacterial strains conditionally expressing these unstable InvC variants were proficient for invasion but underwent rapid and sustained intracellular inactivation of T3SS1 activity when InvC expression ceased. This allowed us to directly implicate T3SS1 activity in cytosolic colonization and bacterial egress. We subsequently identified two T3SS1-delivered effectors, SopB and SipA, that are required for efficient colonization of the epithelial cell cytosol. Overall, our findings support a multifaceted, postinvasion role for T3SS1 and its effectors in defining the cytosolic population of intracellular SalmonellaIMPORTANCE A needle-like apparatus, the type III secretion system (T3SS) injectisome, is absolutely required for Salmonella enterica to enter epithelial cells; this requirement has hampered the analysis of its postentry contributions. To identify T3SS1-dependent intracellular activities, in this study we overcame this limitation by developing a conditional inactivation in the T3SS whereby T3SS activity is chemically induced during culture in liquid broth, permitting bacterial entry into epithelial cells, but is quickly and perpetually inactivated in the absence of inducer. In this sense, the mutant acts like wild-type bacteria when extracellular and as a T3SS mutant once it enters a host cell. This "conditional" mutant allowed us to directly link activity of this T3SS with nascent vacuole lysis, cytosolic proliferation, and cellular egress, demonstrating that the invasion-associated T3SS also contributes to essential intracellular stages of the S. enterica infectious cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Citosol/microbiologia , ATPases Translocadoras de Prótons/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Sistemas de Secreção Tipo III/fisiologia , Carga Bacteriana , Proteínas de Bactérias/genética , Meios de Cultura/química , Citoplasma/metabolismo , Citoplasma/microbiologia , Citosol/metabolismo , Endopeptidases/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Deleção de Sequência , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Vacúolos/microbiologia
7.
Mol Microbiol ; 103(6): 973-991, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997726

RESUMO

Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Sistemas de Secreção Tipo III/genética
8.
Methods Mol Biol ; 1519: 285-296, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27815887

RESUMO

Establishment of an intracellular niche within mammalian cells is key to the pathogenesis of the gastrointestinal bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium). Here we will describe how to study the internalization of S. Typhimurium into human epithelial cells using the gentamicin protection assay. The assay takes advantage of the relatively poor penetration of gentamicin into mammalian cells; internalized bacteria are effectively protected from its antibacterial actions. A second assay, the chloroquine (CHQ) resistance assay, can be used to determine the proportion of internalized bacteria that have lysed or damaged their Salmonella-containing vacuole and are therefore residing within the cytosol. Its application to the quantification of cytosolic S. Typhimurium in epithelial cells will also be presented. Together, these protocols provide an inexpensive, rapid and sensitive quantitative measure of bacterial internalization and vacuole lysis by S. Typhimurium.


Assuntos
Bioensaio/métodos , Endocitose , Células Epiteliais/microbiologia , Salmonella enterica/fisiologia , Vacúolos/metabolismo , Cloroquina/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Gentamicinas/farmacologia , Células HeLa , Humanos , Salmonella enterica/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 113(17): 4794-9, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27078095

RESUMO

Upon entry into host cells, intracellular bacterial pathogens establish a variety of replicative niches. Although some remodel phagosomes, others rapidly escape into the cytosol of infected cells. Little is currently known regarding how professional intracytoplasmic pathogens, including Shigella, mediate phagosomal escape. Shigella, like many other Gram-negative bacterial pathogens, uses a type III secretion system to deliver multiple proteins, referred to as effectors, into host cells. Here, using an innovative reductionist-based approach, we demonstrate that the introduction of a functional Shigella type III secretion system, but none of its effectors, into a laboratory strain of Escherichia coli is sufficient to promote the efficient vacuole lysis and escape of the modified bacteria into the cytosol of epithelial cells. This establishes for the first time, to our knowledge, a direct physiologic role for the Shigella type III secretion apparatus (T3SA) in mediating phagosomal escape. Furthermore, although protein components of the T3SA share a moderate degree of structural and functional conservation across bacterial species, we show that vacuole lysis is not a common feature of T3SA, as an effectorless strain of Yersinia remains confined to phagosomes. Additionally, by exploiting the functional interchangeability of the translocator components of the T3SA of Shigella, Salmonella, and Chromobacterium, we demonstrate that a single protein component of the T3SA translocon-Shigella IpaC, Salmonella SipC, or Chromobacterium CipC-determines the fate of intracellular pathogens within both epithelial cells and macrophages. Thus, these findings have identified a likely paradigm by which the replicative niche of many intracellular bacterial pathogens is established.


Assuntos
Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Fagossomos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos
10.
Nanotoxicology ; 9(1): 9-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24289294

RESUMO

Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn(2+)) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn(2+), together with organelle-specific fluorescent proteins, we quantified Zn(2+) in single cells and organelles over time. We found that at the ALI, intracellular Zn(2+) values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn(2+) values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn(2+) values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn(2+). At the ALI, the majority of intracellular Zn(2+) was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn(2+) following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn(2+) have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.


Assuntos
Células Epiteliais/metabolismo , Exposição por Inalação/análise , Espaço Intracelular/metabolismo , Nanopartículas Metálicas/administração & dosagem , Alvéolos Pulmonares/metabolismo , Óxido de Zinco/farmacocinética , Zinco/farmacocinética , Animais , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Espaço Intracelular/química , Espaço Intracelular/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Zinco/análise , Zinco/química , Zinco/toxicidade , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA