Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1757, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36990995

RESUMO

Access to efficient enzymatic channeling is desired for improving all manner of designer biocatalysis. We demonstrate that enzymes constituting a multistep cascade can self-assemble with nanoparticle scaffolds into nanoclusters that access substrate channeling and improve catalytic flux by orders of magnitude. Utilizing saccharification and glycolytic enzymes with quantum dots (QDs) as a model system, nanoclustered-cascades incorporating from 4 to 10 enzymatic steps are prototyped. Along with confirming channeling using classical experiments, its efficiency is enhanced several fold more by optimizing enzymatic stoichiometry with numerical simulations, switching from spherical QDs to 2-D planar nanoplatelets, and by ordering the enzyme assembly. Detailed analyses characterize assembly formation and clarify structure-function properties. For extended cascades with unfavorable kinetics, channeled activity is maintained by splitting at a critical step, purifying end-product from the upstream sub-cascade, and feeding it as a concentrated substrate to the downstream sub-cascade. Generalized applicability is verified by extending to assemblies incorporating other hard and soft nanoparticles. Such self-assembled biocatalytic nanoclusters offer many benefits towards enabling minimalist cell-free synthetic biology.


Assuntos
Nanopartículas , Pontos Quânticos , Nanopartículas/química , Pontos Quânticos/química , Biocatálise , Catálise , Cinética
2.
Phys Chem Chem Phys ; 25(5): 3651-3665, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648290

RESUMO

Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network.

3.
Nano Lett ; 22(12): 5037-5045, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35580267

RESUMO

DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown in cellula. The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.


Assuntos
Nanoestruturas , Citosol , DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência , Nanoestruturas/química
4.
J Phys Chem Lett ; 11(10): 4163-4172, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32391695

RESUMO

DNA scaffolds enable base-pair-specific positioning of fluorescent molecules, allowing for nanometer-scale precision in controlling multidye interactions. Expanding on this concept, DNA-based molecular photonic wires (MPWs) allow for light harvesting and directional propagation of photonic energy on the nanometer scale. The most common MPW examples exploit Förster resonance energy transfer (FRET), and FRET between the same dye species (HomoFRET) was recently shown to increase the distance and efficiency at which MPWs can function. Although increased proximity between adjacent fluorophores can be used to increase the energy transfer efficiency, FRET assumptions break down as the distance between the dye molecules becomes comparable to their size (∼2 nm). Here we compare dye conjugation with single versus dimer Cy5 dye repeats as HomoFRET MPW components on a double-crossover DNA scaffold. At room temperature (RT) under low-light conditions, end-labeled uncoupled dye molecules provide optimal transfer, while the Cy5 dimers show ultrafast (<100 ps) nonradiative decay that severely limits their functionality. Of particular interest is the observation that through increased excitation fluence as well as cryogenic temperatures, the dimeric MPW shows suppression of the ultrafast decay, demonstrating fluorescence lifetimes similar to the single Cy5 MPWs. This work points to the complex dynamic capabilities of dye-based nanophotonic networks, where dye positioning and interactions can become critical, and could be used to extend the lengths and complexities of such dye-DNA devices, enabling multiparameter nanophotonic circuitry.


Assuntos
Carbocianinas/química , DNA/química , Corantes Fluorescentes/química , Fótons , Termodinâmica , Transferência Ressonante de Energia de Fluorescência
5.
ACS Nano ; 13(12): 13677-13689, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31751123

RESUMO

Developing reliable methods of constructing cell-free multienzyme biocatalytic systems is a milestone goal of synthetic biology. It would enable overcoming the limitations of current cell-based systems, which suffer from the presence of competing pathways, toxicity, and inefficient access to extracellular reactants and removal of products. DNA nanostructures have been suggested as ideal scaffolds for assembling sequential enzymatic cascades in close enough proximity to potentially allow for exploiting of channeling effects; however, initial demonstrations have provided somewhat contradictory results toward confirming this phenomenon. In this work, a three-enzyme sequential cascade was realized by site-specifically immobilizing DNA-conjugated amylase, maltase, and glucokinase on a self-assembled DNA origami triangle. The kinetics of seven different enzyme configurations were evaluated experimentally and compared to simulations of optimized activity. A 30-fold increase in the pathway's kinetic activity was observed for enzymes assembled to the DNA. Detailed kinetic analysis suggests that this catalytic enhancement originated from increased enzyme stability and a localized DNA surface affinity or hydration layer effect and not from a directed enzyme-to-enzyme channeling mechanism. Nevertheless, the approach used to construct this pathway still shows promise toward improving other more elaborate multienzymatic cascades and could potentially allow for the custom synthesis of complex (bio)molecules that cannot be realized with conventional organic chemistry approaches.


Assuntos
DNA/química , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Catálise , Simulação por Computador , Cinética , Modelos Moleculares , Probabilidade , Especificidade por Substrato
6.
Nanoscale ; 11(43): 20693-20706, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31642466

RESUMO

Synthetic DNA templated nanostructures offer an excellent platform for the precise spatial and orientational positioning of organic and inorganic nanomaterials. Previous reports have shown its applicability in the organization of plasmonic nanoparticles in a number of geometries for the purpose of realizing tunable nanoscale optical devices. However, translation of nanoparticle-DNA constructs to application requires additional efforts to increase scalability, reproducibility, and formation yields. Understanding all these factors is, in turn, predicated on in-depth analysis of each structure and comparing how formation changes with complexity. Towards the latter goal, we assemble seven unique plasmonic nanostructure symmetries of increasing complexity based on assembly of gold nanorods and nanoparticles on two different DNA origami templates, a DNA triangle and rhombus, and characterize them using gel electrophoresis, atomic force- and transmission electron microscopy, as well as optical spectroscopy. In particular, we focus on how much control can be elicited over yield, reproducibility, shape, size, inter-particle angles, gaps, and plasmon shifts as compared to expectations from computer simulations as structural complexity increases. We discuss how these results can contribute to establishing process principles for creating DNA templated plasmonic nanostructures.


Assuntos
DNA/química , Nanoestruturas/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectrofotometria
7.
Bioconjug Chem ; 30(7): 2060-2074, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31283212

RESUMO

Enhancements in enzymatic catalytic activity are frequently observed when an enzyme is displayed on a nanoparticle (NP) surface. The exact mechanisms of how this unique interfacial environment gives rise to this phenomenon are still not understood, although evidence suggests that it can help alleviate some of the enzyme's rate-limiting mechanistic steps. The physicochemical limitations that govern when this process arises are also not known including, in particular, the range of NP size and curvature that are associated with it. To investigate the latter, we undertook a case study using the enzyme phosphotriesterase (PTE) and a series of differentially sized gold NPs (AuNPs). PTE, expressed with a terminal hexahistidine sequence, was ratiometrically coordinated to a series of increasing size AuNPs (diameter ≃ 1.5, 5, 10, 20, 55, 100 nm) surface-functionalized with Ni2+-nitrilotriacetic acid ligands and its activity assayed in a comparative format versus that of equivalent amounts of free enzyme controls. PTE-AuNP samples were prepared where the total PTE concentration and NP surface density were kept fixed by varying AuNP concentration along with the converse format. Assembly to the AuNPs increased PTE kcat ca. 3-10-fold depending upon NP size, with the smaller-sized particles showing the highest increase, while enzyme efficiency only increased 2-fold. Further kinetic testing suggested that the PTE enhancement again arose from alleviating its rate limiting step of enzyme-product release and not from a change in the activation energy. Comparison of kcat and enzyme specificity with AuNP diameter revealed that enhancement was directly correlated to AuNP size and curvature with the smaller NPs showing the largest kinetic enhancements. Kinetic simulations showed that almost all of the PTE enhancement variation across AuNP sizes could be reproduced by adjusting only the rate of enzyme-product dissociation. Understanding how NP size directly affects the enhancement of an attached enzyme can provide a rational basis for designing hybrid enzyme-NP materials that specifically exploit this emergent property.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Hidrolases de Triester Fosfórico/química , Biocatálise , Ativação Enzimática , Enzimas Imobilizadas/química , Cinética , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Tamanho da Partícula
8.
Sci Rep ; 7(1): 7382, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785065

RESUMO

DNA nanostructures represent the confluence of materials science, computer science, biology, and engineering. As functional assemblies, they are capable of performing mechanical and chemical work. In this study, we demonstrate global twisting of DNA nanorails made from two DNA origami six-helix bundles. Twisting was controlled using ethidium bromide or SYBR Green I as model intercalators. Our findings demonstrate that DNA nanorails: (i) twist when subjected to intercalators and the amount of twisting is concentration dependent, and (ii) twisting saturates at elevated concentrations. This study provides insight into how complex DNA structures undergo conformational changes when exposed to intercalators and may be of relevance when exploring how intercalating drugs interact with condensed biological structures such as chromatin and chromosomes, as well as chromatin analogous gene expression devices.


Assuntos
DNA/síntese química , Substâncias Intercalantes/química , Nanoestruturas/química , Benzotiazóis , DNA/química , Diaminas , Etídio/química , Modelos Moleculares , Conformação de Ácido Nucleico , Compostos Orgânicos/química , Quinolinas
9.
Nanoscale ; 6(22): 13928-38, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25311051

RESUMO

High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Análise em Microsséries/instrumentação , Nanotubos/química , Sítios de Ligação , DNA/metabolismo , Ouro/química , Análise em Microsséries/estatística & dados numéricos , Microscopia de Força Atômica , Microtecnologia/métodos , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Tamanho da Partícula , Probabilidade , Eletricidade Estática , Propriedades de Superfície
10.
Nano Lett ; 13(8): 3850-6, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23841957

RESUMO

DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA