RESUMO
Weiss-Kruszka Syndrome (WSKA) is caused by pathogenic variants in ZNF462 representing a rare autosomal dominant congenital anomaly syndrome. It is characterized by global developmental delay, hypotonia, feeding difficulties, and craniofacial abnormalities, documented in fewer than 30 patients. ZNF462, located on chromosome 9p31.2, is a transcription factor and has an important role during embryonic development and chromatin remodelling. Here, we report three new patients with WSKA, Through whole exome sequencing (WES) analysis, we identified two novel variants in three patients, two of whom are siblings. These variants (c.3078dup, p.Val1027Cysfs5 and c.4792A > T p.Lys1598*) in the ZNF462 gene are likely resulting in haploinsufficiency. Our patients help to further delineate the phenotype, genotype and potential therapeutic management strategies for WSKA. Since we report a second WSKA patient with an autoimmune disease further clinical and functional studies are needed to elucidate the association between this chromatin remodelling disorder and the development of autoimmune problems. In the future, collaborative efforts are encouraged to develop an episignature for WSKA, given the gene's function and associated patient phenotypes. This new technology has the potential to provide valuable insights into the disorder.
Assuntos
Proteínas de Ligação a DNA , Proteínas do Tecido Nervoso , Fatores de Transcrição , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Sequenciamento do Exoma , Haploinsuficiência , Mutação , Fenótipo , Síndrome , Fatores de Transcrição/genética , Proteínas do Tecido Nervoso/genéticaRESUMO
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.
Assuntos
Drosophila melanogaster , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Obesidade , Complexo de Endopeptidases do Proteassoma , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Drosophila melanogaster/genética , Deficiência Intelectual/genética , Interferons/metabolismo , Interferons/genética , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Obesidade/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
OBJECTIVE: Considering limited evidence on diagnostics of genetic obesity in adults, we evaluated phenotypes of adults with genetic obesity. Additionally, we assessed the applicability of Endocrine Society (ES) recommendations for genetic testing in pediatric obesity. METHODS: We compared clinical features, including age of onset of obesity and appetite, between adults with non-syndromic monogenic obesity (MO), adults with syndromic obesity (SO), and adults with common obesity (CO) as control patients. RESULTS: A total of 79 adults with genetic obesity (32 with MO, 47 with SO) were compared with 186 control patients with CO. Median BMI was similar among the groups: 41.2, 39.5, and 38.7 kg/m2 for patients with MO, SO, and CO, respectively. Median age of onset of obesity was 3 (IQR: 1-6) years in patients with MO, 9 (IQR: 4-13) years in patients with SO, and 21 (IQR: 13-33) years in patients with CO (p < 0.001). Patients with genetic obesity more often reported increased appetite: 65.6%, 68.1%, and 33.9% in patients with MO, SO, and CO, respectively (p < 0.001). Intellectual deficit and autism spectrum disorder were more prevalent in patients with SO (53.2% and 21.3%) compared with those with MO (3.1% and 6.3%) and CO (both 0.0%). The ES recommendations were fulfilled in 56.3%, 29.8%, and 2.7% of patients with MO, SO, and CO, respectively (p < 0.001). CONCLUSIONS: We found distinct phenotypes in adult genetic obesity. Additionally, we demonstrated low sensitivity for detecting genetic obesity in adults using pediatric ES recommendations, necessitating specific genetic testing recommendations in adult obesity care.
Assuntos
Obesidade , Fenótipo , Humanos , Adulto , Masculino , Feminino , Obesidade/genética , Adulto Jovem , Testes Genéticos/métodos , Adolescente , Índice de Massa Corporal , Apetite/genética , Obesidade Infantil/genética , Obesidade Infantil/diagnóstico , Idade de Início , Criança , Pessoa de Meia-IdadeRESUMO
Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.
Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Humanos , Hiperfagia , Obesidade/terapia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de SinaisRESUMO
Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication.
Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Haploinsuficiência , Obesidade , Humanos , Masculino , Feminino , Subunidades beta da Proteína de Ligação ao GTP/genética , Obesidade/genética , Criança , Deficiência Intelectual/genética , Pré-Escolar , Fenótipo , Adolescente , Hiperfagia/genética , AdultoRESUMO
The 16p11.2 deletion syndrome is a clinically heterogeneous disorder, characterized by developmental delay, intellectual disability, hyperphagia, obesity, macrocephaly and psychiatric problems. Cases with 16p11.2 duplication syndrome have similar neurodevelopmental problems, but typically show a partial 'mirror phenotype' with underweight and microcephaly. Various copy number variants (CNVs) of the chromosomal 16p11.2 region have been described. Most is known about the 'typical' 16p11.2 BP4-BP5 (29.6-30.2 Mb; ~600 kb) deletions and duplications, but there are also several published cohorts with more distal 16p11.2 BP2-BP3 CNVs (28.8-29.0 Mb; ~220 kb), who exhibit clinical overlap. We assessed 100 cases with various pathogenic 16p11.2 CNVs and compared their clinical characteristics to provide more clear genotype-phenotype correlations and raise awareness of the different 16p11.2 CNVs. Neurodevelopmental and weight issues were reported in the majority of cases. Cases with distal 16p11.2 BP2-BP3 deletion showed the most severe obesity phenotype (73.7% obesity, mean BMI SDS 3.2). In addition to the more well defined typical 16p11.2 BP4-BP5 and distal 16p11.2 BP2-BP3 CNVs, we describe the clinical features of five cases with other, overlapping, 16p11.2 CNVs in more detail. Interestingly, four cases had a second genetic diagnosis and 18 cases an additional gene variant of uncertain significance, that could potentially help explain the cases' phenotypes. In conclusion, we provide an overview of our Dutch cohort of cases with various pathogenic 16p11.2 CNVs and relevant second genetic findings, that can aid in adequately recognizing, diagnosing and counseling of individuals with 16p11.2 CNVs, and describe the personalized medicine for cases with these conditions.
RESUMO
This case report describes the evaluation of 16-year-old twins with chromosomal microarray and mirror movements.
Assuntos
Genes DCC , Transtornos dos Movimentos , Humanos , Transtornos dos Movimentos/genética , Mutação , Mãos , Receptor DCC/genéticaRESUMO
Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.
Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Adulto , Humanos , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congênitas da Mão/genética , Pescoço/anormalidades , Fenótipo , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genéticaRESUMO
OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.
Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genéticaRESUMO
Leptin receptor (LEPR) deficiency is a rare genetic disorder that affects the body's ability to regulate appetite and weight. For patients and their families, the disorder seriously disrupts daily life; however, little is published about this impact. We here report the experiences of a 10.5-year-old girl with leptin receptor deficiency and her family. The diagnosis of this rare genetic obesity had a deep impact on the life of the child and her family. It led to a better understanding of the cause of the impaired appetite regulation and early-onset obesity with subsequently less judgement by others and improved cooperation of their social network and school on maintaining a healthy lifestyle for this girl. A strict eating regimen and lifestyle measures resulted in the first year after diagnosis in a significantly decreased body mass index (BMI), followed by BMI stabilization, still categorized as obesity class three. However, the troublesome challenge of how to manage the disruptive behaviour due to hyperphagia remained. Eventually, due to treatment with targeted pharmacotherapy, i.e., melanocortin-4 receptor agonists, her BMI continued to decrease due to resolving hyperphagia. The daily routine of the family and the atmosphere at home positively changed as they were no longer dominated by the food-focused behaviour of the child and the adherence to the strict eating regimen. This case report demonstrates the importance and impact of a rare genetic obesity disorder diagnosis in a family. Additionally, it highlights the value of genetic testing in patients with a high suspicion of a genetic obesity disorder as it can eventually lead to personalized treatment, such as guidance by specialized healthcare professionals and educated caregivers or targeted pharmacotherapy.
Assuntos
Erros Inatos do Metabolismo , Medicina de Precisão , Humanos , Criança , Feminino , Receptores para Leptina/genética , Obesidade/complicações , Obesidade/genética , Obesidade/tratamento farmacológico , Hiperfagia/complicações , Hiperfagia/genética , Índice de Massa Corporal , Leptina/uso terapêutico , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistasRESUMO
OBJECTIVE: We sought to assess body mass index trajectories of children with genetic obesity to identify optimal early age of onset of obesity (AoO) cut-offs for genetic screening. STUDY DESIGN: This longitudinal, observational study included growth measurements from birth onward of children with nonsyndromic and syndromic genetic obesity and control children with obesity from a population-based cohort. Diagnostic performance of AoO was evaluated. RESULTS: We describe the body mass index trajectories of 62 children with genetic obesity (29 nonsyndromic, 33 syndromic) and 298 controls. Median AoO was 1.2 years in nonsyndromic genetic obesity (0.4 and 0.6 years in biallelic LEPR and MC4R; 1.7 in heterozygous MC4R); 2.0 years in syndromic genetic obesity (0.9, 2.3, 4.3, and 6.8 years in pseudohypoparathyroidism, Bardet-Biedl syndrome, 16p11.2del syndrome, and Temple syndrome, respectively); and 3.8 years in controls. The optimal AoO cut-off was ≤3.9 years (sensitivity, 0.83; specificity, 0.49; area under the curve, 0.79; P < .001) for nonsyndromic and ≤4.7 years (sensitivity, 0.82; specificity, 0.37; area under the curve, 0.68; P = .001) for syndromic genetic obesity. CONCLUSIONS: Optimal AoO cut-off as single parameter to determine which children should undergo genetic testing was ≤3.9 years. In case of older AoO, additional features indicative of genetic obesity should be present to warrant genetic testing. Optimal cut-offs might differ across different races and ethnicities.
Assuntos
Testes Genéticos , Obesidade , Humanos , Criança , Índice de Massa Corporal , Idade de Início , Obesidade/epidemiologia , Obesidade/genética , Heterozigoto , Receptor Tipo 4 de Melanocortina/genéticaRESUMO
OBJECTIVE: Patients with pro-opiomelanocortin (POMC) defects generally present with early-onset obesity, hyperphagia, hypopigmentation and adrenocorticotropin (ACTH) deficiency. Rodent models suggest that adequate cleavage of ACTH to α-melanocortin-stimulating hormone (α-MSH) and desacetyl-α-melanocortin-stimulating hormone (d-α-MSH) by prohormone convertase 2 at the KKRR region is required for regulating food intake and energy balance. METHODS: We present 2 sisters with a novel POMC gene variant, leading to an ACTH defect at the prohormone convertase 2 cleavage site, and performed functional studies of this variant. RESULTS: The patients had obesity, hyperphagia and hypocortisolism, with markerly raised levels of ACTH but unaffected pigmentation. Their ACTH has reduced potency to stimulate the melanocortin (MC) 2 receptor, explaining their hypocortisolism. CONCLUSION: The hyperphagia and obesity support evidence that adequate cleavage of ACTH to α-MSH and d-α-MSH is also required in humans for feeding control.
Assuntos
Hormônio Adrenocorticotrópico , Pró-Opiomelanocortina , Insuficiência Adrenal , Humanos , Hiperfagia/genética , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 2 , alfa-MSHRESUMO
PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.
Assuntos
Metilação de DNA , Hipogonadismo , Síndrome de Klinefelter , Transtornos do Neurodesenvolvimento , Fatores de Transcrição SOXC , Metilação de DNA/genética , Humanos , Hipogonadismo/genética , Síndrome de Klinefelter/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Fatores de Transcrição SOXC/genética , Sequenciamento do ExomaRESUMO
INTRODUCTION: COVID-19 lockdown measures have large impact on lifestyle behaviors and well-being of children. The aim of this mixed-methods study was to investigate the impact of COVID-19 lockdown measures on eating styles and behaviors, physical activity (PA), screen time, and health-related quality of life (HRQoL) in children (0-18 years) with severe obesity. METHODS: During the first COVID-19 wave (April 2020), validated questionnaires were completed and semi-structured telephone interviews were conducted with parents of children with severe obesity (adult body mass index [BMI]-equivalent ≥35 kg/m2) and/or with the children themselves. Changes in pre-pandemic versus lockdown scores of the Dutch Eating Behavior Questionnaire Children, Pediatric Quality of Life Inventory, and Dutch PA Questionnaire were assessed. Qualitative analyses were performed according to the Grounded Theory. RESULTS: Ninety families were approached of which 83 families were included. Characteristics of the included children were: mean age 11.2 ± 4.6 years, 52% female, mean BMI SD-score +3.8 ± 1.0. Emotional, restrained, and external eating styles, HRQoL, and (noneducational) screen time did not change on group level (all p > 0.05). However, weekly PA decreased (mean difference -1.9 h/week, p = 0.02) mostly in adolescents. In the majority of children, mean weekly PA decreased to ≤2 h/week. Children with high emotional or external eating scores during lockdown or pre-existent psychosocial problems had the lowest HRQoL (p < 0.01). Qualitative analyses revealed an increased demand for food in a significant proportion of children (n = 21), mostly in children <10 years (19/21). This was often attributed to loss of daily structure and perceived stress. Families who reported no changes (n = 15) or improved eating behaviors (n = 11) attributed this to already existing strict eating schemes that they kept adhering to during lockdown. CONCLUSION: This study shows differing responses to COVID-19 lockdown measures in children with severe obesity. On group level, PA significantly decreased and in substantial minorities eating styles and HRQoL deteriorated. Children with pre-existent psychosocial problems or pre-pandemic high external or emotional eating scores were most at risk. These children and their families should be targeted by health care professionals to minimize negative physical and mental health consequences.
Assuntos
COVID-19 , Obesidade Mórbida , Adolescente , Adulto , COVID-19/prevenção & controle , Criança , Controle de Doenças Transmissíveis , Feminino , Humanos , Estilo de Vida , Masculino , Pandemias/prevenção & controle , Qualidade de Vida , SARS-CoV-2RESUMO
Prader-Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome 15q11.2-13. Patients with Prader-Willi-like syndrome (PWLS) display features of the PWS phenotype without a classical PWS genetic defect. We describe a 46-year-old patient with PWLS, including hypotonia, intellectual disability, hyperphagia, and pituitary hormone deficiencies. Routine genetic tests for PWS were normal, but a homozygous missense variant NM_003097.3(SNRPN):c.193C>T, p.(Arg65Trp) was identified. Single nucleotide polymorphism array showed several large regions of homozygosity, caused by high-grade consanguinity between the parents. Our functional analysis, the 'Pipeline for Rapid in silico, in vivo, in vitro Screening of Mutations' (PRiSM) screen, showed that overexpression of SNRPN-p.Arg65Trp had a dominant negative effect, strongly suggesting pathogenicity. However, it could not be confirmed that the variant was responsible for the phenotype of the patient. In conclusion, we present a unique homozygous missense variant in SNURF-SNRPN in a patient with PWLS. We describe the diagnostic trajectory of this patient and the possible contributors to her phenotype in light of the current literature on the genotype-phenotype relationship in PWS.
Assuntos
Proteínas Nucleares/genética , Síndrome de Prader-Willi/genética , Proteínas Centrais de snRNP/genética , Células Cultivadas , Feminino , Impressão Genômica , Células HEK293 , Homozigoto , Humanos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Fenótipo , Síndrome de Prader-Willi/diagnóstico , Proteínas Centrais de snRNP/metabolismoRESUMO
Obesity is highly prevalent and comes with serious health burden. In a minority, a genetic cause is present which often results in therapy-resistant obesity. Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue, which has beneficial effects on satiety and weight in common obesity. We present the effects of GLP-1 analogues in adults with a molecularly proven genetic cause of their overweight or obesity. All patients were treated with liraglutide 3.0 mg daily, in addition to intensive supportive lifestyle treatment. Anthropometrics, metabolic parameters, resting energy expenditure (REE), side effects, and subjectively reported satiety and quality of life were assessed. Two patients with 16p11.2 deletion syndrome and two patients with heterozygous pathogenic melanocortin-4 receptor variants were treated. At baseline, their age ranged between 21 and 32 years and body mass index (BMI) ranged between 28.1 and 55.7 kg/m2 . At follow-up (ranges 43 weeks-12 years), a mean change in BMI and waist circumference was observed of -5.7 ± 3.8 kg/m2 and -15.2 ± 21.1 cm, respectively. All patients achieved ≥5% weight loss, three of them lost ≥10% of their body weight. All patients reported improved quality of life and three of them reported ameliorated satiety. Moreover, improvement of glycaemic control and dyslipidaemia were seen. In two patients, REE before and during treatment was measured, which either increased (+26% of predicted REE) or decreased (-18% of predicted REE). Two patients experienced mild side effects for a brief period. In conclusion, our case series shows beneficial effects of GLP-1 analogues on weight, metabolic parameters and quality of life in all four patients with genetic obesity.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Qualidade de Vida , Adulto , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Obesidade/tratamento farmacológico , Adulto JovemRESUMO
PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
Assuntos
Transtorno do Espectro Autista , Encefalopatias , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Encéfalo , Proteína 4 Homóloga a Disks-Large/genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0232990.].
RESUMO
PURPOSE OF REVIEW: The global prevalence of obesity has increased rapidly over the last decades, posing a severe threat to human health. Currently, bariatric surgery is the most effective therapy for patients with morbid obesity. It is unknown whether this treatment is also suitable for patients with obesity due to a confirmed genetic defect (genetic obesity disorders). Therefore, this review aims to elucidate the role of bariatric surgery in the treatment of genetic obesity. RECENT FINDINGS: In monogenic non-syndromic obesity, an underlying genetic defect seems to be the most important factor determining the efficacy of bariatric surgery. In syndromic obesity, bariatric surgery result data are scarce, and even though some promising follow-up results have been reported, caution is required as patients with more severe behavioral and developmental disorders might have poorer outcomes. There is limited evidence in support of bariatric surgery as a treatment option for genetic obesity disorders; hence, no strong statements can be made regarding the efficacy and safety of these procedures for these patients. However, considering that patients with genetic obesity often present with life-threatening obesity-related comorbidities, we believe that bariatric surgery could be considered a last-resort treatment option in selected patients.