Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(18): e202303808, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38100290

RESUMO

Electrocatalytic hydrogenations (ECH) enable the reduction of organic substrates upon usage of electric current and present a sustainable alternative to conventional processes if green electricity is used. Opposed to most current protocols for electrode preparation, this work presents a one-step binder- and additive-free production of silver- and copper-electroplated electrodes. Controlled adjustment of the preparation parameters allows for the tuning of catalyst morphology and its electrochemical properties. Upon optimization of the deposition protocol and carbon support, high faradaic efficiencies of 93 % for the ECH of the Vitamin A- and E-synthon 2-methyl-3-butyn-2-ol (MBY) are achieved that can be maintained at current densities of 240 mA cm-2 and minimal catalyst loadings of 0.2 mg cm-2, corresponding to an unmatched production rate of 1.47 kgMBE gcat -1 h-1. For a continuous hydrogenation process, the protocol can be directly transferred into a single-pass operation mode giving a production rate of 1.38 kgMBE gcat -1 h-1. Subsequently, the substrate spectrum was extended to a total of 17 different C-C-, C-O- and N-O-unsaturated compounds revealing the general applicability of the reported process. Our results lay an important groundwork for the development of electrochemical reactors and electrodes able to directly compete with the palladium-based thermocatalytic state of the art.

2.
Chem Soc Rev ; 52(21): 7305-7332, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37814786

RESUMO

Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.

3.
Chem Sci ; 13(42): 12461-12468, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382291

RESUMO

Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in recent years. However, for the large-scale industrial application of electrochemical hydrogenations, low-resistance zero-gap electrolysers operating at high current densities and high substrate concentrations, ideally applying noble-metal-free catalyst systems, are required. Because of their conductivity, stability, and stoichiometric flexibility, transition metal sulfides of the pentlandite group have been thoroughly investigated as promising electrocatalysts for electrochemical applications but were not investigated for electrochemical hydrogenations of organic materials. An initial screening of a series of first row transition metal pentlandites revealed promising activity for the electrochemical hydrogenation of alkynols in water. The most active catalyst within the series was then incorporated into a zero-gap electrolyser enabling the hydrogenation of alkynols at current densities of up to 240 mA cm-2, Faraday efficiencies of up to 75%, and an alkene selectivity of up to 90%. In this scalable setup we demonstrate high stability of catalyst and electrode for at least 100 h. Altogether, we illustrate the successful integration of a sustainable catalyst into a scalable zero-gap electrolyser establishing electrosynthetic methods in an application-oriented manner.

4.
Chem Soc Rev ; 50(3): 1668-1784, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33305760

RESUMO

While hydrogen plays an ever-increasing role in modern society, nature has utilized hydrogen since a very long time as an energy carrier and storage molecule. Among the enzymatic systems that metabolise hydrogen, [FeFe]-hydrogenases are one of the most powerful systems to perform this conversion. In this light, we will herein present an overview on developments in [FeFe]-hydrogenase research with a strong focus on synthetic mimics and their application within the native enzymatic environment. This review spans from the biological assembly of the natural enzyme and the highly controversial discussed mechanism for the hydrogen generation to the synthesis of multiple mimic platforms as well as their electrochemical behaviour.


Assuntos
Materiais Biomiméticos/metabolismo , Hidrogenase/metabolismo , Materiais Biomiméticos/química , Catálise , Clostridium/enzimologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Metais/química , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA