Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 6(7): 948-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724835

RESUMO

Stroke is the leading cause of adult disability in the U.S. and is now recognized as a global epidemic. There are currently no FDA-approved drugs to block the cell death that results from oxygen and glucose deprivation. This void in clinical medicine has sparked an intense interest in understanding endogenous cellular protective pathways that might be exploited for therapeutic development. The work highlighted here describes the critical role between redox tone and energetic stress signaling in mediating mitophagy and determining neuronal cell fate following acute oxygen glucose deprivation.


Assuntos
Autofagia/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Oxirredução , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Adulto , Células Cultivadas , Humanos , Precondicionamento Isquêmico , Neurônios/citologia , Proteínas Quinases/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais/fisiologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
2.
J Neurochem ; 109 Suppl 1: 17-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19393004

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) senses metabolic stress and integrates diverse physiological signals to restore energy balance. Multiple functions are indicated for AMPK in the CNS. While all neurons sense their own energy status, some integrate neuro-humoral signals to assess organismal energy balance. A variety of disease states may involve AMPK, so determining the underlying mechanisms is important. We review the impact of altered AMPK activity under physiological (hunger, satiety) and pathophysiological (stroke) conditions, as well as therapeutic manipulations of AMPK that may improve energy balance.


Assuntos
Química Encefálica/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético/fisiologia , Animais , Química Encefálica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Estresse Oxidativo/fisiologia
3.
J Neurosci Methods ; 167(2): 292-301, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17936912

RESUMO

Understanding the mechanisms that govern neuronal responses to oxidative and metabolic stress is essential for therapeutic intervention. In vitro modeling is an important approach for these studies, as the metabolic environment influences neuronal responses. Surprisingly, most neuronal culture methods employ conditions that are non-physiological, especially with regards to glucose concentrations, which often exceed 20mM. This concentration is a significant departure from physiological glucose levels, and even several-fold greater than that seen during severe hyperglycemia. The goal of this study was to establish a physiological neuronal culture system that will facilitate the study of neuronal energy metabolism and responses to metabolic stress. We demonstrate that the metabolic environment during preparation, plating, and maintenance of cultures affects neuronal viability and the response of neuronal pathways to changes in energy balance.


Assuntos
Glucose/metabolismo , Complexos Multienzimáticos/metabolismo , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Proteínas Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Análise de Variância , Animais , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Glucose/administração & dosagem , Hipoglicemiantes/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Fatores de Tempo
4.
Am J Physiol Regul Integr Comp Physiol ; 294(2): R352-61, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18056987

RESUMO

Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.


Assuntos
Peso Corporal/fisiologia , Carnitina O-Palmitoiltransferase/metabolismo , Ingestão de Alimentos/fisiologia , Hipotálamo/enzimologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Inibidores da Síntese de Ácidos Graxos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Gravidez , Ratos
5.
Neurosci Lett ; 423(3): 200-4, 2007 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-17709201

RESUMO

Understanding the mechanisms that regulate feeding is critical to the development of therapeutic interventions for obesity. Many studies indicate that enzymes within fatty acid metabolic pathways may serve as targets for pharmacological tools to treat this epidemic. We, and others have previously demonstrated that C75, a fatty acid synthase (FAS) inhibitor, induced significant anorexia and weight loss by both central and peripheral mechanisms. Because the hypothalamus is important in the regulation of homeostatic processes for feeding control, we have identified pathways that alter the gene expression of FAS in primary hypothalamic neuronal cultures. Insulin, glucose and AICAR (an activator of AMP-activated protein kinase) affected changes in hypothalamic FAS mRNA, which may be regulated via the SREBP1c dependent or independent pathway.


Assuntos
Ácido Graxo Sintases/genética , Regulação da Expressão Gênica , Hipotálamo/enzimologia , Neurônios/enzimologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feto , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/administração & dosagem , Glucose/farmacologia , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Insulina/administração & dosagem , Insulina/farmacologia , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fatores de Tempo
6.
Cell Cycle ; 6(9): 1077-89, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17404514

RESUMO

Neuronal stem cell expansion and differentiation is a process involving stages of proliferation and maturation governed by the sequential and combinatorial exposure of cells to extrinsic factors. The olfactory epithelium is an excellent model to investigate regulation of this process, as it undergoes neuronal replacement post-natally. We have shown that the neurotrophins NGF and BDNF sequentially promote proliferation of developing olfactory sensory neuronal precursors, although their kinetics of proliferation and cell fate outcomes differ. Interestingly, CNP inhibits this neurotrophin-induced proliferation and promotes the maturation of these precursors to their next developmental stage. Here, we investigate the mechanisms behind these actions. Both NGF and BDNF increase the expression of cyclin D1 and cyclin-dependent kinase 4 (cdk4), with temporal expression patterns that parallel the proliferation kinetics of their cellular targets. The timing of cyclin D1 expression reflects differences in the need for transcription and translation in early and late stage precursors. CNP inhibits neurotrophin-induced cyclin D1 expression, and induces the expression of different profiles of inhibitory cell cycle proteins, which are neurotrophin-specific and correlate with the attainment of different maturational cell fates. Inhibition of protein degradation reverses the effects of neurotrophins and CNP on cyclin D1 and inhibitor expression levels, respectively. These results suggest a model for cell cycle regulation that involves the simultaneous expression of progressive and inhibitory cell cycle regulatory proteins in response to both proliferation and differentiation agents, followed by selective degradation of these proteins, providing a mechanism for rapid and exquisite control of the cell cycle.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas de Ciclo Celular/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Fator de Crescimento Neural/farmacologia , Neurônios Receptores Olfatórios/metabolismo , Células-Tronco/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Cicloeximida/farmacologia , Sistema de Sinalização das MAP Quinases , Fator de Crescimento Neural/antagonistas & inibidores , Fator de Crescimento Neural/genética , Neurônios Receptores Olfatórios/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ratos , Células-Tronco/citologia
7.
Obesity (Silver Spring) ; 14 Suppl 5: 201S-207S, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17021367

RESUMO

A potential role for fatty acid metabolism in the regulation of energy balance in the brain or in the periphery has been considered only recently. Fatty acid synthase (FAS) catalyzes the synthesis of long-chain fatty acids, whereas the breakdown of fatty acids by beta-oxidation is regulated by carnitine palmitoyltransferase-1, the rate-limiting enzyme for the entry of fatty acids into the mitochondria for oxidation. While the question of the physiological role of fatty acid metabolism remains to be resolved, studies indicate that inhibition of FAS or stimulation of carnitine palmitoyltransferase-1 using cerulenin or synthetic FAS inhibitors reduces food intake and incurs profound and reversible weight loss. Several hypotheses regarding the mechanisms by which these small molecules mediate their effects have been entertained. Centrally, these compounds alter the expression of hypothalamic neuropeptides, generally reducing the expression of orexigenic peptides. Whether through central, peripheral, or combined central and peripheral mechanisms, these compounds also increase energy consumption to augment weight loss. In vitro and in vivo studies indicate that at least part of C75's effects is mediated by modulation of adenosine monophosphate-activated protein kinase, a member of an energy-sensing kinase family. These compounds, with chronic treatment, also alter gene expression peripherally to favor a state of enhanced energy consumption. Together, these effects raise the possibility that pharmacological alterations in fatty acid synthesis/degradation may serve as a target for obesity therapeutics.


Assuntos
4-Butirolactona/análogos & derivados , Ingestão de Alimentos , Ácido Graxo Sintases/antagonistas & inibidores , Ácidos Graxos/metabolismo , Expressão Gênica/efeitos dos fármacos , Obesidade/tratamento farmacológico , 4-Butirolactona/uso terapêutico , Sistema Nervoso Central/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ácido Graxo Sintases/metabolismo , Expressão Gênica/fisiologia , Humanos , Obesidade/enzimologia , Obesidade/metabolismo , Oxirredução , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA