Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(4): 1189-1197, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665843

RESUMO

Many known chemotherapeutic anticancer agents exhibit neutropenia as a dose-limiting side effect. In this paper we suggest a prodrug concept solving this problem for camptothecin (HO-cpt). The prodrug is programmed according to Boolean "AND" logic. In the absence of H2O2 (trigger T1), e.g. in the majority of normal cells, it exists as an inactive oligomer. In cancer cells and in primed neutrophils (high H2O2), the oligomer is disrupted forming intermediate (inactive) lipophilic cationic species. These are accumulated in mitochondria (Mit) of cancer cells, where they are activated by hydrolysis at mitochondrial pH 8 (trigger T2) with formation of camptothecin. In contrast, the intermediates remain stable in neutrophils lacking Mit and therefore a source of T2. In this paper we demonstrated a proof-of-concept. Our prodrug exhibits antitumor activity both in vitro and in vivo, but is not toxic to normal cell and neutrophils in contrast to known single trigger prodrugs and the parent drug HO-cpt.

2.
J Am Chem Soc ; 145(40): 22252-22264, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773090

RESUMO

The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).

3.
Chemistry ; 29(45): e202301340, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37171462

RESUMO

Despite their long history and their synthetic potential underlined by various recent advances, radical thiol-yne coupling reactions have so far only rarely been exploited for the functionalization of biomolecules, and no examples yet exist for their application in live cells - although natural thiols show widespread occurrence therein. By taking advantage of the particular cellular conditions of mitochondria in cancer cells, we have demonstrated that radical thiol-yne coupling represents a powerful reaction principle for the selective targeting of these organelles. Within our studies, fluorescently labeled reactive alkyne probes were investigated, for which the fluorescent moiety was chosen to enable both mitochondria accumulation as well as highly sensitive detection. After preliminary studies under cell-free conditions, the most promising alkyne-dye conjugates were evaluated in various cellular experiments comprising analysis by flow cytometry and microscopy. All in all, these results pave the way for improved future therapeutic strategies relying on live-cell compatibility and selectivity among cellular compartments.


Assuntos
Alcinos , Compostos de Sulfidrila , Rodaminas , Corantes , Mitocôndrias
4.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241945

RESUMO

RNA interference (RNAi) using small interfering RNAs (siRNAs) is a powerful tool to target any protein of interest and is becoming more suitable for in vivo applications due to recent developments in RNA delivery systems. To exploit RNAi for cancer treatment, it is desirable to increase its selectivity, e.g., by a prodrug approach to activate the siRNAs upon external triggering, e.g., by using light. Red light is especially well suited for in vivo applications due to its low toxicity and higher tissue penetration. Known molecular (not nanoparticle-based) red-light-activatable siRNA prodrugs rely on singlet oxygen (1O2)-mediated chemistry. 1O2 is highly cytotoxic. Additionally, one of the side products in the activation of the known siRNA prodrugs is anthraquinone, which is also toxic. We herein report on an improved redlight-activatable siRNA prodrug, which does not require 1O2 for its activation. In fact, the 5' terminus of the antisense strand is protected with an electron-rich azobenzene promoiety. It is reduced and cleaved upon red light exposure in the presence of Sn(IV)(pyropheophorbide a)dichloride acting as a catalyst and ascorbate as a bulk reducing agent. We confirmed the prodrug activation upon red light irradiation both in cell-free settings and in human ovarian cancer A2780 cells.


Assuntos
Neoplasias Ovarianas , Pró-Fármacos , Humanos , Feminino , Interferência de RNA , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , RNA Interferente Pequeno/metabolismo , RNA de Cadeia Dupla
5.
JACS Au ; 3(3): 964-977, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006770

RESUMO

Supramolecular recognition of nucleotides would enable manipulating crucial biochemical pathways like transcription and translation directly and with high precision. Therefore, it offers great promise in medicinal applications, not least in treating cancer or viral infections. This work presents a universal supramolecular approach to target nucleoside phosphates in nucleotides and RNA. The artificial active site in new receptors simultaneously realizes several binding and sensing mechanisms: encapsulation of a nucleobase via dispersion and hydrogen bonding interactions, recognition of the phosphate residue, and a self-reporting feature-"turn-on" fluorescence. Key to the high selectivity is the conscious separation of phosphate- and nucleobase-binding sites by introducing specific spacers in the receptor structure. We have tuned the spacers to achieve high binding affinity and selectivity for cytidine 5' triphosphate coupled to a record 60-fold fluorescence enhancement. The resulting structures are also the first functional models of poly(rC)-binding protein coordinating specifically to C-rich RNA oligomers, e.g., the 5'-AUCCC(C/U) sequence present in poliovirus type 1 and the human transcriptome. The receptors bind to RNA in human ovarian cells A2780, causing strong cytotoxicity at 800 nM. The performance, self-reporting property, and tunability of our approach open up a promising and unique avenue for sequence-specific RNA binding in cells by using low-molecular-weight artificial receptors.

6.
Chem Commun (Camb) ; 58(27): 4388-4391, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35297916

RESUMO

Due to oxidative instability, arylboronic acids are not compatible with the solid-phase synthesis of nucleic acids. We solved this problem and, based on these findings, developed siRNA prodrugs activated in the presence of reactive oxygen species (ROS) in vivo. These prodrugs can be used for specific targeting of ROS-rich cancer cells.


Assuntos
Pró-Fármacos , Oxirredução , Pró-Fármacos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Angew Chem Int Ed Engl ; 60(20): 11158-11162, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33656236

RESUMO

The folding and export of proteins and hydrolysis of unfolded proteins are disbalanced in the endoplasmic reticulum (ER) of cancer cells, leading to so-called ER stress. Agents further augmenting this effect are used as anticancer drugs including clinically approved proteasome inhibitors bortezomib and carfilzomib. However, these drugs can affect normal cells, which also rely strongly on ER functions, leading, for example, to accumulation of reactive oxygen species (ROS). To address this problem, we have developed ER-targeted prodrugs activated only in cancer cells in the presence of elevated ROS amounts. These compounds are conjugates of cholic acid with N-alkylaminoferrocene-based prodrugs. We confirmed their accumulation in the ER of cancer cells, their anticancer efficacy, and cancer cell specificity. These prodrugs induce ER stress, attenuate mitochondrial membrane potential, and generate mitochondrial ROS leading to cell death via necrosis. We also demonstrated that the new prodrugs are activated in vivo in Nemeth-Kellner lymphoma (NK/Ly) murine model.


Assuntos
Antineoplásicos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Linfoma/tratamento farmacológico , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/química , Retículo Endoplasmático/metabolismo , Humanos , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Pró-Fármacos/química
8.
RSC Adv ; 11(14): 8163-8177, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423299

RESUMO

A fluorescein-tagged iron(ii) cage complex was obtained in a moderate total yield using a two-step synthetic procedure starting from its propargylamine-containing clathrochelate precursor. An 11-fold decrease in fluorescence quantum yield is observed in passing from the given fluorescein-based dye to its clathrochelate derivative. An excitation energy transfer from the terminal fluorescent group of the macrobicyclic molecule to its quasiaromatic highly π-conjugated clathrochelate framework can explain this effect. The kinetics of the hydrolysis of the acetyl groups of acetylated fluorescein azide and its clathrochelate derivative in the presence of one equivalent of BSA evidenced no strong supramolecular host-guest interactions between BSA and the tested compounds. Study of a chemical stability of the deacetylated iron(ii) clathrochelate suggested the formation of a supramolecular 1 : 1 BSA-clathrochelate assembly. Moreover, an addition of BSA or HSA to its solution caused the appearance of strong clathrochelate-based ICD outputs. The fluorescence emission anisotropy studies also evidenced the supramolecular binding of the fluorescein-tagged iron(ii) clathrochelate to the BSA macromolecule, leading to a high increase in this type of anisotropy. Subcellular uptake of the fluorescein-tagged molecules was visualized using fluorescence microscopy and showed its distribution to be mainly in the cytosol without entering the nucleus or accumulating in any other organelle. An X-rayed crystal of the above propargylamide macrobicyclic precursor with a reactive terminal C[triple bond, length as m-dash]C bond contains the clathrochelate molecules of two types, A and B. The encapsulated iron(ii) ion in these molecules is situated in the center of its FeN6-coordination polyhedron, the geometry of which is intermediate between a trigonal prism (TP) and a trigonal antiprism (TAP). The Fe-N distances vary from 1.8754(6) to 1.9286(4) Å and the heights h of their distorted TP-TAP polyhedra are very similar (2.30 and 2.31 Å); their values of φ are equal to 25.3 and 26.6°. In this crystal, the molecules of types A and B participate in different types of hydrogen bonding, giving H-bonded clathrochelate tetramers through their carboxylic and amide groups, respectively; these tetramers are connected to H-bonded chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA