Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38724044

RESUMO

To explore the effects of climate change on malaria and 20 neglected tropical diseases (NTDs), and potential effect amelioration through mitigation and adaptation, we searched for papers published from January 2010 to October 2023. We descriptively synthesised extracted data. We analysed numbers of papers meeting our inclusion criteria by country and national disease burden, healthcare access and quality index (HAQI), as well as by climate vulnerability score. From 42 693 retrieved records, 1543 full-text papers were assessed. Of 511 papers meeting the inclusion criteria, 185 studied malaria, 181 dengue and chikungunya and 53 leishmaniasis; other NTDs were relatively understudied. Mitigation was considered in 174 papers (34%) and adaption strategies in 24 (5%). Amplitude and direction of effects of climate change on malaria and NTDs are likely to vary by disease and location, be non-linear and evolve over time. Available analyses do not allow confident prediction of the overall global impact of climate change on these diseases. For dengue and chikungunya and the group of non-vector-borne NTDs, the literature privileged consideration of current low-burden countries with a high HAQI. No leishmaniasis papers considered outcomes in East Africa. Comprehensive, collaborative and standardised modelling efforts are needed to better understand how climate change will directly and indirectly affect malaria and NTDs.

2.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606570

RESUMO

Since the end of November 2023, the European Mortality Monitoring Network (EuroMOMO) has observed excess mortality in Europe. During weeks 48 2023-6 2024, preliminary results show a substantially increased rate of 95.3 (95% CI:  91.7-98.9) excess all-cause deaths per 100,000 person-years for all ages. This excess mortality is seen in adults aged 45 years and older, and coincides with widespread presence of COVID-19, influenza and respiratory syncytial virus (RSV) observed in many European countries during the 2023/24 winter season.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Adulto , Humanos , Influenza Humana/epidemiologia , Europa (Continente)/epidemiologia , Estações do Ano , Infecções por Vírus Respiratório Sincicial/epidemiologia
3.
Int J Epidemiol ; 52(3): 664-676, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36029524

RESUMO

BACKGROUND: To understand the impact of the COVID-19 pandemic on mortality, this study investigates overall, sex- and age-specific excess all-cause mortality in 20 countries, during 2020. METHODS: Total, sex- and age-specific weekly all-cause mortality for 2015-2020 was collected from national vital statistics databases. Excess mortality for 2020 was calculated by comparing weekly 2020 observed mortality against expected mortality, estimated from historical data (2015-2019) accounting for seasonality, long- and short-term trends. Crude and age-standardized rates were analysed for total and sex-specific mortality. RESULTS: Austria, Brazil, Cyprus, England and Wales, France, Georgia, Israel, Italy, Northern Ireland, Peru, Scotland, Slovenia, Sweden, and the USA displayed substantial excess age-standardized mortality of varying duration during 2020, while Australia, Denmark, Estonia, Mauritius, Norway, and Ukraine did not. In sex-specific analyses, excess mortality was higher in males than females, except for Slovenia (higher in females) and Cyprus (similar in both sexes). Lastly, for most countries substantial excess mortality was only detectable (Austria, Cyprus, Israel, and Slovenia) or was higher (Brazil, England and Wales, France, Georgia, Italy, Northern Ireland, Sweden, Peru and the USA) in the oldest age group investigated. Peru demonstrated substantial excess mortality even in the <45 age group. CONCLUSIONS: This study highlights that excess all-cause mortality during 2020 is context dependent, with specific countries, sex- and age-groups being most affected. As the pandemic continues, tracking excess mortality is important to accurately estimate the true toll of COVID-19, while at the same time investigating the effects of changing contexts, different variants, testing, quarantine, and vaccination strategies.


Assuntos
COVID-19 , Feminino , Masculino , Humanos , COVID-19/epidemiologia , Pandemias , Itália , França , Fatores Etários , Mortalidade
4.
Lancet Glob Health ; 10(10): e1412-e1422, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113527

RESUMO

BACKGROUND: Marked reductions in the incidence of measles and rubella have been observed since the widespread use of the measles and rubella vaccines. Although no global goal for measles eradication has been established, all six WHO regions have set measles elimination targets. However, a gap remains between current control levels and elimination targets, as shown by large measles outbreaks between 2017 and 2019. We aimed to model the potential for measles and rubella elimination globally to inform a WHO report to the 73rd World Health Assembly on the feasibility of measles and rubella eradication. METHODS: In this study, we modelled the probability of measles and rubella elimination between 2020 and 2100 under different vaccination scenarios in 93 countries of interest. We evaluated measles and rubella burden and elimination across two national transmission models each (Dynamic Measles Immunisation Calculation Engine [DynaMICE], Pennsylvania State University [PSU], Johns Hopkins University, and Public Health England models), and one subnational measles transmission model (Institute for Disease Modeling model). The vaccination scenarios included a so-called business as usual approach, which continues present vaccination coverage, and an intensified investment approach, which increases coverage into the future. The annual numbers of infections projected by each model, country, and vaccination scenario were used to explore if, when, and for how long the infections would be below a threshold for elimination. FINDINGS: The intensified investment scenario led to large reductions in measles and rubella incidence and burden. Rubella elimination is likely to be achievable in all countries and measles elimination is likely in some countries, but not all. The PSU and DynaMICE national measles models estimated that by 2050, the probability of elimination would exceed 75% in 14 (16%) and 36 (39%) of 93 modelled countries, respectively. The subnational model of measles transmission highlighted inequity in routine coverage as a likely driver of the continuance of endemic measles transmission in a subset of countries. INTERPRETATION: To reach regional elimination goals, it will be necessary to innovate vaccination strategies and technologies that increase spatial equity of routine vaccination, in addition to investing in existing surveillance and outbreak response programmes. FUNDING: WHO, Gavi, the Vaccine Alliance, US Centers for Disease Control and Prevention, and the Bill & Melinda Gates Foundation.


Assuntos
Sarampo , Rubéola (Sarampo Alemão) , Erradicação de Doenças , Estudos de Viabilidade , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Rubéola (Sarampo Alemão)/epidemiologia , Rubéola (Sarampo Alemão)/prevenção & controle , Estados Unidos , Vacinação
5.
BMC Med ; 20(1): 113, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260139

RESUMO

BACKGROUND: Dynamic modeling is commonly used to evaluate direct and indirect effects of interventions on infectious disease incidence. The risk of secondary outcomes (e.g., death) attributable to infection may depend on the underlying disease incidence targeted by the intervention. Consequently, the impact of interventions (e.g., the difference in vaccination and no-vaccination scenarios) on secondary outcomes may not be proportional to the reduction in disease incidence. Here, we illustrate the estimation of the impact of vaccination on measles mortality, where case fatality ratios (CFRs) are a function of dynamically changing measles incidence. METHODS: We used a previously published model of measles CFR that depends on incidence and vaccine coverage to illustrate the effects of (1) assuming higher CFR in "no-vaccination" scenarios, (2) time-varying CFRs over the past, and (3) time-varying CFRs in future projections on measles impact estimation. We used modeled CFRs in alternative scenarios to estimate measles deaths from 2000 to 2030 in 112 low- and middle-income countries using two models of measles transmission: Pennsylvania State University (PSU) and DynaMICE. We evaluated how different assumptions on future vaccine coverage, measles incidence, and CFR levels in "no-vaccination" scenarios affect the estimation of future deaths averted by measles vaccination. RESULTS: Across 2000-2030, when CFRs are separately estimated for the "no-vaccination" scenario, the measles deaths averted estimated by PSU increased from 85.8% with constant CFRs to 86.8% with CFRs varying 2000-2018 and then held constant or 85.9% with CFRs varying across the entire time period and by DynaMICE changed from 92.0 to 92.4% or 91.9% in the same scenarios, respectively. By aligning both the "vaccination" and "no-vaccination" scenarios with time-variant measles CFR estimates, as opposed to assuming constant CFRs, the number of deaths averted in the vaccination scenarios was larger in historical years and lower in future years. CONCLUSIONS: To assess the consequences of health interventions, impact estimates should consider the effect of "no-intervention" scenario assumptions on model parameters, such as measles CFR, in order to project estimated impact for alternative scenarios according to intervention strategies and investment decisions.


Assuntos
Sarampo , Humanos , Incidência , Sarampo/complicações , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vacinação
6.
PLoS Med ; 19(3): e1003907, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35231023

RESUMO

BACKGROUND: During the Coronavirus Disease 2019 (COVID-19) pandemic, the United Kingdom government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We conducted a repeated cross-sectional study to measure contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering 3 national lockdowns interspersed by periods of less restrictive policies. METHODS AND FINDINGS: The repeated cross-sectional survey data were collected using online surveys of representative samples of the UK population by age and gender. Survey participants were recruited by the online market research company Ipsos MORI through internet-based banner and social media ads and email campaigns. The participant data used for this analysis are restricted to those who reported living in England. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. To put the findings in perspective, we discuss contact rates recorded throughout the year in terms of previously recorded rates from the POLYMOD study social contact study. The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. We observed changes in social contact patterns in England over time and by participants' age, personal risk factors, and perception of risk. The mean reported contacts for adults 18 to 59 years old ranged between 2.39 (95% confidence interval [CI] 2.20 to 2.60) contacts and 4.93 (95% CI 4.65 to 5.19) contacts during the study period. The mean contacts for school-age children (5 to 17 years old) ranged from 3.07 (95% CI 2.89 to 3.27) to 15.11 (95% CI 13.87 to 16.41). This demonstrates a sustained decrease in social contacts compared to a mean of 11.08 (95% CI 10.54 to 11.57) contacts per participant in all age groups combined as measured by the POLYMOD social contact study in 2005 to 2006. Contacts measured during periods of lockdowns were lower than in periods of eased social restrictions. The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. The main limitations of this analysis are the potential for selection bias, as participants are recruited through internet-based campaigns, and recall bias, in which participants may under- or overreport the number of contacts they have made. CONCLUSIONS: In this study, we observed that recorded contacts reduced dramatically compared to prepandemic levels (as measured in the POLYMOD study), with changes in reported contacts correlated with government interventions throughout the pandemic. Despite easing of restrictions in the summer of 2020, the mean number of reported contacts only returned to about half of that observed prepandemic at its highest recorded level. The CoMix survey provides a unique repeated cross-sectional data set for a full year in England, from the first day of the first lockdown, for use in statistical analyses and mathematical modelling of COVID-19 and other diseases.


Assuntos
COVID-19/psicologia , Interação Social , Adolescente , Adulto , Idoso , Atitude Frente a Saúde , Estudos Transversais , Inglaterra , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Psicológicos , Pandemias , Inquéritos e Questionários , Adulto Jovem
7.
BMC Public Health ; 22(1): 54, 2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000578

RESUMO

BACKGROUND: Understanding the impact of the burden of COVID-19 is key to successfully navigating the COVID-19 pandemic. As part of a larger investigation on COVID-19 mortality impact, this study aims to estimate the Potential Years of Life Lost (PYLL) in 17 countries and territories across the world (Australia, Brazil, Cape Verde, Colombia, Cyprus, France, Georgia, Israel, Kazakhstan, Peru, Norway, England & Wales, Scotland, Slovenia, Sweden, Ukraine, and the United States [USA]). METHODS: Age- and sex-specific COVID-19 death numbers from primary national sources were collected by an international research consortium. The study period was established based on the availability of data from the inception of the pandemic to the end of August 2020. The PYLL for each country were computed using 80 years as the maximum life expectancy. RESULTS: As of August 2020, 442,677 (range: 18-185,083) deaths attributed to COVID-19 were recorded in 17 countries which translated to 4,210,654 (range: 112-1,554,225) PYLL. The average PYLL per death was 8.7 years, with substantial variation ranging from 2.7 years in Australia to 19.3 PYLL in Ukraine. North and South American countries as well as England & Wales, Scotland and Sweden experienced the highest PYLL per 100,000 population; whereas Australia, Slovenia and Georgia experienced the lowest. Overall, males experienced higher PYLL rate and higher PYLL per death than females. In most countries, most of the PYLL were observed for people aged over 60 or 65 years, irrespective of sex. Yet, Brazil, Cape Verde, Colombia, Israel, Peru, Scotland, Ukraine, and the USA concentrated most PYLL in younger age groups. CONCLUSIONS: Our results highlight the role of PYLL as a tool to understand the impact of COVID-19 on demographic groups within and across countries, guiding preventive measures to protect these groups under the ongoing pandemic. Continuous monitoring of PYLL is therefore needed to better understand the burden of COVID-19 in terms of premature mortality.


Assuntos
COVID-19 , Idoso , Brasil , Feminino , Humanos , Expectativa de Vida , Masculino , Mortalidade , Mortalidade Prematura , Pandemias , SARS-CoV-2 , Estados Unidos
8.
Int J Epidemiol ; 51(1): 35-53, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34282450

RESUMO

BACKGROUND: This study aimed to investigate overall and sex-specific excess all-cause mortality since the inception of the COVID-19 pandemic until August 2020 among 22 countries. METHODS: Countries reported weekly or monthly all-cause mortality from January 2015 until the end of June or August 2020. Weekly or monthly COVID-19 deaths were reported for 2020. Excess mortality for 2020 was calculated by comparing weekly or monthly 2020 mortality (observed deaths) against a baseline mortality obtained from 2015-2019 data for the same week or month using two methods: (i) difference in observed mortality rates between 2020 and the 2015-2019 average and (ii) difference between observed and expected 2020 deaths. RESULTS: Brazil, France, Italy, Spain, Sweden, the UK (England, Wales, Northern Ireland and Scotland) and the USA demonstrated excess all-cause mortality, whereas Australia, Denmark and Georgia experienced a decrease in all-cause mortality. Israel, Ukraine and Ireland demonstrated sex-specific changes in all-cause mortality. CONCLUSIONS: All-cause mortality up to August 2020 was higher than in previous years in some, but not all, participating countries. Geographical location and seasonality of each country, as well as the prompt application of high-stringency control measures, may explain the observed variability in mortality changes.


Assuntos
COVID-19 , Feminino , França , Humanos , Itália , Masculino , Mortalidade , Pandemias , SARS-CoV-2
9.
Artigo em Inglês | MEDLINE | ID: mdl-34929990

RESUMO

INTRODUCTION: To inform Chlamydia trachomatis (CT) infection control, the objectives of the second Slovenian National Survey of Sexual Lifestyles, Attitudes, and Health in 2016-2017 were to estimate the prevalence of and identify risk factors for CT infection among sexually experienced 18- to 49-year-olds in Slovenia. METHODS: Data were collected from a probability sample of the general population 18 to 49 years old. Respondents were invited to provide a urine specimen for CT testing. Data were analyzed using STATA 15 survey commands to account for stratification and clustering. RESULTS: Of 1,046 CT test results of sexually experienced respondents included in the analyses, the weighted prevalence of CT infection was 0.5% (95% confidence interval [CI]: 0.1-1.9) in men and 1.7% (95% CI: 0.9-3.3) in women. The highest prevalence was among women 18 to 24 years old (5.6%; 95% CI: 2.0-14.4). Women 18 to 49 years old with a new sex partner in the last year had higher odds of CT infection (adjusted odds ratio: 8.9, 95% CI: 2.5-31.9). CONCLUSIONS: The introduction of annual opportunistic testing for CT should be considered for sexually active women < 25 years old, and testing should be offered at primary healthcare gynecology clinics to older women reporting a new sex partner during the past year.


Assuntos
Infecções Sexualmente Transmissíveis , Adolescente , Adulto , Idoso , Atitude , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Adulto Jovem
10.
Epidemics ; 37: 100507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34823222

RESUMO

When a novel pathogen emerges there may be opportunities to eliminate transmission - locally or globally - whilst case numbers are low. However, the effort required to push a disease to elimination may come at a vast cost at a time when uncertainty is high. Models currently inform policy discussions on this question, but there are a number of open challenges, particularly given unknown aspects of the pathogen biology, the effectiveness and feasibility of interventions, and the intersecting political, economic, sociological and behavioural complexities for a novel pathogen. In this overview, we detail how models might identify directions for better leveraging or expanding the scope of data available on the pathogen trajectory, for bounding the theoretical context of emergence relative to prospects for elimination, and for framing the larger economic, behavioural and social context that will influence policy decisions and the pathogen's outcome.


Assuntos
Políticas
11.
BMC Med ; 19(1): 281, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34784922

RESUMO

BACKGROUND: Model-based estimates of measles burden and the impact of measles-containing vaccine (MCV) are crucial for global health priority setting. Recently, evidence from systematic reviews and database analyses have improved our understanding of key determinants of MCV impact. We explore how representations of these determinants affect model-based estimation of vaccination impact in ten countries with the highest measles burden. METHODS: Using Dynamic Measles Immunisation Calculation Engine (DynaMICE), we modelled the effect of evidence updates for five determinants of MCV impact: case-fatality risk, contact patterns, age-dependent vaccine efficacy, the delivery of supplementary immunisation activities (SIAs) to zero-dose children, and the basic reproduction number. We assessed the incremental vaccination impact of the first (MCV1) and second (MCV2) doses of routine immunisation and SIAs, using metrics of total vaccine-averted cases, deaths, and disability-adjusted life years (DALYs) over 2000-2050. We also conducted a scenario capturing the effect of COVID-19 related disruptions on measles burden and vaccination impact. RESULTS: Incorporated with the updated data sources, DynaMICE projected 253 million measles cases, 3.8 million deaths and 233 million DALYs incurred over 2000-2050 in the ten high-burden countries when MCV1, MCV2, and SIA doses were implemented. Compared to no vaccination, MCV1 contributed to 66% reduction in cumulative measles cases, while MCV2 and SIAs reduced this further to 90%. Among the updated determinants, shifting from fixed to linearly-varying vaccine efficacy by age and from static to time-varying case-fatality risks had the biggest effect on MCV impact. While varying the basic reproduction number showed a limited effect, updates on the other four determinants together resulted in an overall reduction of vaccination impact by 0.58%, 26.2%, and 26.7% for cases, deaths, and DALYs averted, respectively. COVID-19 related disruptions to measles vaccination are not likely to change the influence of these determinants on MCV impact, but may lead to a 3% increase in cases over 2000-2050. CONCLUSIONS: Incorporating updated evidence particularly on vaccine efficacy and case-fatality risk reduces estimates of vaccination impact moderately, but its overall impact remains considerable. High MCV coverage through both routine immunisation and SIAs remains essential for achieving and maintaining low incidence in high measles burden settings.


Assuntos
COVID-19 , Sarampo , Criança , Humanos , Programas de Imunização , Lactente , Sarampo/epidemiologia , Sarampo/prevenção & controle , SARS-CoV-2 , Vacinação
12.
BMC Public Health ; 21(1): 2049, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753437

RESUMO

BACKGROUND: Deaths due to vaccine preventable diseases cause a notable proportion of mortality worldwide. To quantify the importance of vaccination, it is necessary to estimate the burden averted through vaccination. The Vaccine Impact Modelling Consortium (VIMC) was established to estimate the health impact of vaccination. METHODS: We describe the methods implemented by the VIMC to estimate impact by calendar year, birth year and year of vaccination (YoV). The calendar and birth year methods estimate impact in a particular year and over the lifetime of a particular birth cohort, respectively. The YoV method estimates the impact of a particular year's vaccination activities through the use of impact ratios which have no stratification and stratification by activity type and/or birth cohort. Furthermore, we detail an impact extrapolation (IE) method for use between coverage scenarios. We compare the methods, focusing on YoV for hepatitis B, measles and yellow fever. RESULTS: We find that the YoV methods estimate similar impact with routine vaccinations but have greater yearly variation when campaigns occur with the birth cohort stratification. The IE performs well for the YoV methods, providing a time-efficient mechanism for updates to impact estimates. CONCLUSIONS: These methods provide a robust set of approaches to quantify vaccination impact; however it is vital that the area of impact estimation continues to develop in order to capture the full effect of immunisation.


Assuntos
Sarampo , Febre Amarela , Coorte de Nascimento , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Saúde Pública , Vacinação
13.
Nat Commun ; 12(1): 5412, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518525

RESUMO

Emerging evidence suggests that contact tracing has had limited success in the UK in reducing the R number across the COVID-19 pandemic. We investigate potential pitfalls and areas for improvement by extending an existing branching process contact tracing model, adding diagnostic testing and refining parameter estimates. Our results demonstrate that reporting and adherence are the most important predictors of programme impact but tracing coverage and speed plus diagnostic sensitivity also play an important role. We conclude that well-implemented contact tracing could bring small but potentially important benefits to controlling and preventing outbreaks, providing up to a 15% reduction in R. We reaffirm that contact tracing is not currently appropriate as the sole control measure.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Busca de Comunicante/métodos , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Surtos de Doenças/prevenção & controle , Humanos , Pandemias/prevenção & controle , Quarentena , SARS-CoV-2 , Sensibilidade e Especificidade , Reino Unido/epidemiologia
14.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253291

RESUMO

Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.


Assuntos
Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/uso terapêutico , COVID-19 , Saúde Global , Modelos Biológicos , SARS-CoV-2 , Infecções Bacterianas/epidemiologia , Humanos
15.
PLoS Comput Biol ; 17(7): e1009098, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310590

RESUMO

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices show qualitative similarities to the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.


Assuntos
COVID-19/epidemiologia , Distribuição por Idade , COVID-19/virologia , Pesquisa Empírica , Europa (Continente)/epidemiologia , Geografia , Humanos , Pandemias , População Rural , SARS-CoV-2/isolamento & purificação , População Urbana
16.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200270, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34053257

RESUMO

Contact tracing is an important tool for allowing countries to ease lockdown policies introduced to combat SARS-CoV-2. For contact tracing to be effective, those with symptoms must self-report themselves while their contacts must self-isolate when asked. However, policies such as legal enforcement of self-isolation can create trade-offs by dissuading individuals from self-reporting. We use an existing branching process model to examine which aspects of contact tracing adherence should be prioritized. We consider an inverse relationship between self-isolation adherence and self-reporting engagement, assuming that increasingly strict self-isolation policies will result in fewer individuals self-reporting to the programme. We find that policies which increase the average duration of self-isolation, or that increase the probability that people self-isolate at all, at the expense of reduced self-reporting rate, will not decrease the risk of a large outbreak and may increase the risk, depending on the strength of the trade-off. These results suggest that policies to increase self-isolation adherence should be implemented carefully. Policies that increase self-isolation adherence at the cost of self-reporting rates should be avoided. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Assuntos
COVID-19/epidemiologia , Busca de Comunicante/estatística & dados numéricos , Modelos Teóricos , Pandemias , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/transmissão , COVID-19/virologia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Surtos de Doenças , Humanos , SARS-CoV-2/patogenicidade
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200274, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34053264

RESUMO

The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis/tendências , Pandemias , SARS-CoV-2/patogenicidade , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/virologia , Humanos , Reino Unido/epidemiologia
18.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
19.
Euro Surveill ; 26(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446304

RESUMO

The European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.


Assuntos
COVID-19/mortalidade , Mortalidade/tendências , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Causas de Morte , Criança , Pré-Escolar , Sistemas Computacionais , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , SARS-CoV-2 , Adulto Jovem
20.
Nat Med ; 26(10): 1616-1622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32770169

RESUMO

Case isolation and contact tracing can contribute to the control of COVID-19 outbreaks1,2. However, it remains unclear how real-world social networks could influence the effectiveness and efficiency of such approaches. To address this issue, we simulated control strategies for SARS-CoV-2 transmission in a real-world social network generated from high-resolution GPS data that were gathered in the course of a citizen-science experiment3,4. We found that tracing the contacts of contacts reduced the size of simulated outbreaks more than tracing of only contacts, but this strategy also resulted in almost half of the local population being quarantined at a single point in time. Testing and releasing non-infectious individuals from quarantine led to increases in outbreak size, suggesting that contact tracing and quarantine might be most effective as a 'local lockdown' strategy when contact rates are high. Finally, we estimated that combining physical distancing with contact tracing could enable epidemic control while reducing the number of quarantined individuals. Our findings suggest that targeted tracing and quarantine strategies would be most efficient when combined with other control measures such as physical distancing.


Assuntos
Busca de Comunicante , Infecções por Coronavirus/epidemiologia , Isolamento de Pacientes , Pneumonia Viral/epidemiologia , Quarentena , Rede Social , Betacoronavirus , COVID-19 , Controle de Doenças Transmissíveis/métodos , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Modelos Estatísticos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA