Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3945, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730238

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Ribossomos , Ribossomos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biossíntese de Proteínas , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia
2.
J Biol Chem ; 300(3): 105780, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395310

RESUMO

Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp-directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.


Assuntos
Escherichia coli , Biossíntese de Proteínas , Ribossomos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos/metabolismo , Puromicina , Ribossomos/metabolismo
3.
J Med Chem ; 66(17): 11831-11842, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37603874

RESUMO

With the growing crisis of antimicrobial resistance, it is critical to continue to seek out new sources of novel antibiotics. This need has led to renewed interest in natural product antimicrobials, specifically antimicrobial peptides. Nonlytic antimicrobial peptides are highly promising due to their unique mechanisms of action. One such peptide is apidaecin (Api), which inhibits translation termination through stabilization of the quaternary complex of the ribosome-apidaecin-tRNA-release factor. Synthetic derivatives of apidaecin have been developed, but structure-guided modifications have yet to be considered. In this work, we have focused on modifying key residues in the Api sequence that are responsible for the interactions that stabilize the quaternary complex. We present one of the first examples of a highly modified Api peptide that maintains its antimicrobial activity and interaction with the translation complex. These findings establish a starting point for further structure-guided optimization of Api peptides.


Assuntos
Peptídeos Antimicrobianos , Produtos Biológicos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Relação Estrutura-Atividade , Produtos Biológicos/farmacologia
4.
Bioorg Med Chem Lett ; 91: 129364, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295615

RESUMO

Hydrogen-tritium exchange is widely employed for radioisotopic labeling of molecules of biological interest but typically involves the metal-promoted exchange of sp2-hybridized carbon-hydrogen bonds, a strategy that is not directly applicable to the antibiotic iboxamycin, which possesses no such bonds. We show that ruthenium-induced 2'-epimerization of 2'-epi-iboxamycin in HTO (200 mCi) of low specific activity (10 Ci/g, 180 mCi/mmol) at 80 °C for 18 h affords after purification tritium-labeled iboxamycin (3.55 µCi) with a specific activity of 53 mCi/mmol. Iboxamycin displayed an apparent inhibition constant (Ki, app) of 41 ± 30 nM towards Escherichia coli ribosomes, binding approximately 70-fold more tightly than the antibiotic clindamycin (Ki, app = 2.7 ± 1.1 µM).


Assuntos
Antibacterianos , Clindamicina , Antibacterianos/química , Clindamicina/química , Clindamicina/metabolismo , Hidrogênio , Trítio/química , Rutênio/química
5.
Nat Chem Biol ; 19(9): 1082-1090, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36997647

RESUMO

The proline-rich antimicrobial peptide (PrAMP) Drosocin (Dro) from fruit flies shows sequence similarity to other PrAMPs that bind to the ribosome and inhibit protein synthesis by varying mechanisms. The target and mechanism of action of Dro, however, remain unknown. Here we show that Dro arrests ribosomes at stop codons, probably sequestering class 1 release factors associated with the ribosome. This mode of action is comparable to that of apidaecin (Api) from honeybees, making Dro the second member of the type II PrAMP class. Nonetheless, analysis of a comprehensive library of endogenously expressed Dro mutants shows that the interactions of Dro and Api with the target are markedly distinct. While only a few C-terminal amino acids of Api are critical for binding, the interaction of Dro with the ribosome relies on multiple amino acid residues distributed throughout the PrAMP. Single-residue substitutions can substantially enhance the on-target activity of Dro.


Assuntos
Peptídeos Antimicrobianos , Biossíntese de Proteínas , Animais , Escherichia coli/metabolismo , Glicopeptídeos/química , Drosophila/química , Drosophila/metabolismo
6.
Nat Chem Biol ; 18(11): 1277-1286, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36138139

RESUMO

Orthosomycin antibiotics inhibit protein synthesis by binding to the large ribosomal subunit in the tRNA accommodation corridor, which is traversed by incoming aminoacyl-tRNAs. Structural and biochemical studies suggested that orthosomycins block accommodation of any aminoacyl-tRNAs in the ribosomal A-site. However, the mode of action of orthosomycins in vivo remained unknown. Here, by carrying out genome-wide analysis of antibiotic action in bacterial cells, we discovered that orthosomycins primarily inhibit the ribosomes engaged in translation of specific amino acid sequences. Our results reveal that the predominant sites of orthosomycin-induced translation arrest are defined by the nature of the incoming aminoacyl-tRNA and likely by the identity of the two C-terminal amino acid residues of the nascent protein. We show that nature exploits this antibiotic-sensing mechanism for directing programmed ribosome stalling within the regulatory open reading frame, which may control expression of an orthosomycin-resistance gene in a variety of bacterial species.


Assuntos
Antibacterianos , Ribossomos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Biossíntese de Proteínas
8.
Nat Struct Mol Biol ; 29(2): 162-171, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165456

RESUMO

The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. However, the molecular basis for context-specificity has not been elucidated. Here we show that the second-generation oxazolidinone radezolid also induces stalling with a penultimate alanine, and we determine high-resolution cryo-EM structures of linezolid- and radezolid-stalled ribosome complexes to explain their mechanism of action. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling due to repositioning of the modified nucleotide. Together, our findings provide molecular understanding for the context-specificity of oxazolidinones.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Oxazolidinonas/química , Oxazolidinonas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Alanina/química , Sítios de Ligação , Microscopia Crioeletrônica , Linezolida/química , Linezolida/farmacologia , Modelos Moleculares , Peptidil Transferases/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/ultraestrutura
9.
Nat Struct Mol Biol ; 29(2): 152-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165455

RESUMO

Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.


Assuntos
Cloranfenicol/química , Cloranfenicol/farmacologia , Peptidil Transferases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Conformação Proteica , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Eletricidade Estática , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064089

RESUMO

Kasugamycin (KSG) is an aminoglycoside antibiotic widely used in agriculture and exhibits considerable medical potential. Previous studies suggested that KSG interferes with translation by blocking binding of canonical messenger RNA (mRNA) and initiator transfer tRNA (tRNA) to the small ribosomal subunit, thereby preventing initiation of protein synthesis. Here, by using genome-wide approaches, we show that KSG can interfere with translation even after the formation of the 70S initiation complex on mRNA, as the extent of KSG-mediated translation inhibition correlates with increased occupancy of start codons by 70S ribosomes. Even at saturating concentrations, KSG does not completely abolish translation, allowing for continuing expression of some Escherichia coli proteins. Differential action of KSG significantly depends on the nature of the mRNA residue immediately preceding the start codon, with guanine in this position being the most conducive to inhibition by the drug. In addition, the activity of KSG is attenuated by translational coupling as genes whose start codons overlap with the coding regions or the stop codons of the upstream cistrons tend to be less susceptible to drug-mediated inhibition. Altogether, our findings reveal KSG as an example of a small ribosomal subunit-targeting antibiotic with a well-pronounced context specificity of action.


Assuntos
Aminoglicosídeos/farmacologia , Sítios de Ligação , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/genética , Ribossomos/metabolismo , Aminoglicosídeos/química , Códon de Iniciação , Estrutura Molecular , Fases de Leitura Aberta , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/química , Relação Estrutura-Atividade
12.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619078

RESUMO

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Assuntos
Antibacterianos/uso terapêutico , Doença de Lyme/tratamento farmacológico , Animais , Borrelia burgdorferi/efeitos dos fármacos , Calibragem , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fezes/microbiologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Higromicina B/análogos & derivados , Higromicina B/química , Higromicina B/farmacologia , Higromicina B/uso terapêutico , Doença de Lyme/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos
13.
Nature ; 599(7885): 507-512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707295

RESUMO

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern1. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings2. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/classificação , Clindamicina/síntese química , Clindamicina/farmacologia , Descoberta de Drogas , Lincomicina/síntese química , Lincomicina/farmacologia , Metiltransferases/genética , Metiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxepinas , Piranos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
14.
Nat Commun ; 12(1): 5340, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504068

RESUMO

Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/genética , Triptofano/química , Substituição de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Óperon , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Triptofano/metabolismo
15.
Nat Commun ; 12(1): 2803, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990576

RESUMO

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Assuntos
Antibacterianos/farmacologia , Macrolídeos/farmacologia , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Sítios de Ligação , Microscopia Crioeletrônica , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Humanos , Macrolídeos/química , Modelos Moleculares , Mutação , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Fúngico/genética , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Relação Estrutura-Atividade
16.
Methods Mol Biol ; 2252: 27-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765270

RESUMO

The knowledge of translation start sites is crucial for annotation of genes in bacterial genomes. However, systematic mapping of start codons in bacterial genes has mainly relied on predictions based on protein conservation and mRNA sequence features which, although useful, are not always accurate. We recently found that the pleuromutilin antibiotic retapamulin (RET) is a specific inhibitor of translation initiation that traps ribosomes specifically at start codons, and we used it in combination with ribosome profiling to map start codons in the Escherichia coli genome. This genome-wide strategy, that was named Ribo-RET, not only verifies the position of start codons in already annotated genes but also enables identification of previously unannotated open reading frames and reveals the presence of internal start sites within genes. Here, we provide a detailed Ribo-RET protocol for E. coli. Ribo-RET can be adapted for mapping the start codons of the protein-coding sequences in a variety of bacterial species.


Assuntos
Códon de Iniciação , Biologia Computacional/métodos , Escherichia coli/genética , Ribossomos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Códon de Iniciação/efeitos dos fármacos , Diterpenos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Genoma Bacteriano , Anotação de Sequência Molecular , Fases de Leitura Aberta , Biossíntese de Proteínas/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33674389

RESUMO

Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Escherichia coli , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas , Substituição de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação de Sentido Incorreto , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
18.
Elife ; 92020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33031031

RESUMO

Biochemical studies suggested that the antimicrobial peptide apidaecin (Api) inhibits protein synthesis by binding in the nascent peptide exit tunnel and trapping the release factor associated with a terminating ribosome. The mode of Api action in bacterial cells had remained unknown. Here genome-wide analysis reveals that in bacteria, Api arrests translating ribosomes at stop codons and causes pronounced queuing of the trailing ribosomes. By sequestering the available release factors, Api promotes pervasive stop codon bypass, leading to the expression of proteins with C-terminal extensions. Api-mediated translation arrest leads to the futile activation of the ribosome rescue systems. Understanding the unique mechanism of Api action in living cells may facilitate the development of new medicines and research tools for genome exploration.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Códon de Terminação/metabolismo , Escherichia coli/efeitos dos fármacos , Genoma Bacteriano/efeitos dos fármacos , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Ribossomos/metabolismo , Códon de Terminação/efeitos dos fármacos , Escherichia coli/metabolismo , Ribossomos/efeitos dos fármacos
19.
Nat Commun ; 11(1): 2900, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518240

RESUMO

5S rRNA is an indispensable component of cytoplasmic ribosomes in all species. The functions of 5S rRNA and the reasons for its evolutionary preservation as an independent molecule remain unclear. Here we used ribosome engineering to investigate whether 5S rRNA autonomy is critical for ribosome function and cell survival. By linking circularly permutated 5S rRNA with 23S rRNA we generated a bacterial strain devoid of free 5S rRNA. Viability of the engineered cells demonstrates that autonomous 5S rRNA is dispensable for cell growth under standard conditions and is unlikely to have essential functions outside the ribosome. The fully assembled ribosomes carrying 23S-5S rRNA are highly active in translation. However, the engineered cells accumulate aberrant 50S subunits unable to form stable 70S ribosomes. Cryo-EM analysis revealed a malformed peptidyl transferase center in the misassembled 50S subunits. Our results argue that the autonomy of 5S rRNA is preserved due to its role in ribosome biogenesis.


Assuntos
RNA Ribossômico 5S/metabolismo , Ribossomos/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica , Engenharia Genética , Mutação , Conformação de Ácido Nucleico , Peptidil Transferases/metabolismo , RNA Bacteriano , RNA Ribossômico 23S/metabolismo , Recombinases Rec A/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
20.
Mol Cell ; 74(3): 481-493.e6, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30904393

RESUMO

The use of alternative translation initiation sites enables production of more than one protein from a single gene, thereby expanding the cellular proteome. Although several such examples have been serendipitously found in bacteria, genome-wide mapping of alternative translation start sites has been unattainable. We found that the antibiotic retapamulin specifically arrests initiating ribosomes at start codons of the genes. Retapamulin-enhanced Ribo-seq analysis (Ribo-RET) not only allowed mapping of conventional initiation sites at the beginning of the genes, but strikingly, it also revealed putative internal start sites in a number of Escherichia coli genes. Experiments demonstrated that the internal start codons can be recognized by the ribosomes and direct translation initiation in vitro and in vivo. Proteins, whose synthesis is initiated at internal in-frame and out-of-frame start sites, can be functionally important and contribute to the "alternative" bacterial proteome. The internal start sites may also play regulatory roles in gene expression.


Assuntos
Genoma Bacteriano/genética , Iniciação Traducional da Cadeia Peptídica , Proteoma/genética , Proteômica , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Códon de Iniciação/genética , Diterpenos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genoma Bacteriano/efeitos dos fármacos , RNA Mensageiro/genética , Ribossomos/efeitos dos fármacos , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA