Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Prev Cardiol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437179

RESUMO

AIMS: Resting heart rate (RHR) is associated with cardiovascular disease (CVD) and mortality. This study aimed to identify genetic loci associated with RHR, develop a genome-wide polygenic risk score (PRS) for RHR, and assess associations between the RHR PRS and CVD outcomes, to better understand the biological mechanisms linking RHR to disease. Sex-specific analyses were conducted to potentially elucidate different pathways between the sexes. METHODS: We performed a genome-wide meta-analysis of RHR (n=550,467) using two independent study populations, The Trøndelag Health Study (HUNT) and the UK Biobank (UKB), comprising 69,155 and 481,312 participants, respectively. We also developed a genome-wide PRS for RHR using UKB and tested for association between the PRS and 13 disease outcomes in HUNT. RESULTS: We identified 403, 253, and 167 independent single nucleotide polymorphisms (SNPs) significantly associated with RHR in the total population, women, and men, respectively. The sex-specified analyses indicated differences in the genetic contribution to RHR and revealed loci significantly associated with RHR in only one of the sexes. The SNPs were mapped to genes enriched in heart tissue and cardiac conduction pathways, as well as disease-pathways, including dilated cardiomyopathy. The PRS for RHR was associated with increased risk of hypertension and dilated cardiomyopathy, and decreased risk of atrial fibrillation. CONCLUSION: Our findings provide insight into the pleiotropic effects of the RHR variants, contributing towards an improved understanding of mechanisms linking RHR and disease. In addition, the sex-specific results might contribute to a more refined understanding of RHR as a risk factor for the different diseases.


We conducted a genome-wide meta-analysis on resting heart rate (RHR), created a polygenic risk score for RHR and examined the associations to cardiovascular disease outcomes. Sex-specific analyses indicated differences in the genetic contribution to RHR between men and women.High genetically predicted RHR was associated with increased risk of dilated cardiomyopathy and hypertension, and decreased risk of atrial fibrillation.

2.
Europace ; 25(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738632

RESUMO

AIMS: A low resting heart rate (RHR) implies a more efficient heart function and a lower risk of cardiovascular disease. However, observational studies have reported a U-shaped association between RHR and atrial fibrillation (AF). In contrast, Mendelian randomization (MR) studies have found an inverse causal association between RHR and AF. Hence, the causal nature of the relationship is not clear. The aim is to investigate the causal association and its shape between RHR on AF using linear and non-linear MR (NLMR). METHODS AND RESULTS: Linear and non-linear MR were performed on individual-level data in the Trøndelag Health Study (HUNT) and UK Biobank (UKB). HUNT consists of 69 155 individuals with 7,062 AF cases, while UKB provides data on 431 852 individuals with 20 452 AF cases. The linear MR found an inverse relationship between RHR and AF with an OR = 0.95 [95% confidence interval (CI): 0.93-0.98] and OR = 0.96 (95% CI: 0.95-0.97) per unit decrease in RHR in HUNT and UKB, respectively. The NLMR was supportive of an inverse linear relationship in both HUNT and UKB for RHR values <90 beats per minute (bpm). Several sensitivity analyses were also consistent. CONCLUSION: In contrast with the current observational knowledge of RHR and AF, an inverse causal association between RHR and AF was demonstrated in both linear and non-linear MR for RHR values up to 90 bpm. Further exploring the underlying mechanisms of the genetic instrument for RHR may shed light on whether pleiotropy is biasing this association.

3.
Eur J Epidemiol ; 38(9): 995-1008, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603226

RESUMO

Physical activity (PA), aerobic fitness, and cardiometabolic diseases (CMD) are highly heritable multifactorial phenotypes. Shared genetic factors may underlie the associations between higher levels of PA and better aerobic fitness and a lower risk for CMDs. We aimed to study how PA genotype associates with self-reported PA, aerobic fitness, cardiometabolic risk factors and diseases. PA genotype, which combined variation in over one million of gene variants, was composed using the SBayesR polygenic scoring methodology. First, we constructed a polygenic risk score for PA in the Trøndelag Health Study (N = 47,148) using UK Biobank single nucleotide polymorphism-specific weights (N = 400,124). The associations of the PA PRS and continuous variables were analysed using linear regression models and with CMD incidences using Cox proportional hazard models. The results showed that genotypes predisposing to higher amount of PA were associated with greater self-reported PA (Beta [B] = 0.282 MET-h/wk per SD of PRS for PA, 95% confidence interval [CI] = 0.211, 0.354) but not with aerobic fitness. These genotypes were also associated with healthier cardiometabolic profile (waist circumference [B = -0.003 cm, 95% CI = -0.004, -0.002], body mass index [B = -0.002 kg/m2, 95% CI = -0.004, -0.001], high-density lipoprotein cholesterol [B = 0.004 mmol/L, 95% CI = 0.002, 0.006]) and lower incidence of hypertensive diseases (Hazard Ratio [HR] = 0.97, 95% CI = 0.951, 0.990), stroke (HR = 0.94, 95% CI = 0.903, 0.978) and type 2 diabetes (HR = 0.94, 95 % CI = 0.902, 0.970). Observed associations were independent of self-reported PA. These results support earlier findings suggesting small pleiotropic effects between PA and CMDs and provide new evidence about associations of polygenic inheritance of PA and intermediate cardiometabolic risk factors.


Assuntos
Fatores de Risco Cardiometabólico , Exercício Físico , Estratificação de Risco Genético , Humanos , Diabetes Mellitus Tipo 2 , Hipertensão , Herança Multifatorial
4.
Physiol Genomics ; 55(10): 440-451, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37575066

RESUMO

Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o2max), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o2max and disease. We believe that identifying the mechanisms explaining how low V̇o2max is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o2max were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (FSHR) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (RADIL) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (PKNOX2) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest P values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o2max and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o2max and disease in larger cohorts to increase statistical power.NEW & NOTEWORTHY To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.


Assuntos
Consumo de Oxigênio , Oxigênio , Masculino , Humanos , Feminino , Estudos de Associação Genética , Consumo de Oxigênio/genética
5.
PLoS One ; 18(5): e0285355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146027

RESUMO

BACKGROUND: Traditional biomarkers used to measure risk of myocardial infarction (MI) only explain a modest proportion of the incidence. Lipoprotein subfractions have the potential to improve risk prediction of MI. AIM: We aimed to identify lipoprotein subfractions that were associated with imminent MI risk. METHODS: We identified apparently healthy participants with a predicted low 10-year risk of MI from The Trøndelag Health Survey 3 (HUNT3) that developed MI within 5 years after inclusion (cases, n = 50) and 100 matched controls. Lipoprotein subfractions were analyzed in serum by nuclear magnetic resonance spectroscopy at time of inclusion in HUNT3. Lipoprotein subfractions were compared between cases and controls in the full population (N = 150), and in subgroups of males (n = 90) and females (n = 60). In addition, a sub analysis was performed in participants that experienced MI within two years and their matched controls (n = 56). RESULTS: None of the lipoprotein subfractions were significantly associated with future MI when adjusting for multiple testing (p<0.002). At nominal significance level (p<0.05), the concentration of apolipoprotein A1 in the smallest high-density lipoprotein (HDL) subfractions was higher in cases compared to controls. Further, in sub analyses based on sex, male cases had lower lipid concentration within the large HDL subfractions and higher lipid concentration within the small HDL subfractions compared to male controls (p<0.05). No differences were found in lipoprotein subfractions between female cases and controls. In sub analysis of individuals suffering from MI within two years, triglycerides in low-density lipoprotein were higher among cases (p<0.05). CONCLUSION: None of the investigated lipoprotein subfractions were associated with future MI after adjustment for multiple testing. However, our findings suggests that HDL subfractions may be of interest in relation to risk prediction for MI, especially in males. This need to be further investigated in future studies.


Assuntos
Lipoproteínas , Infarto do Miocárdio , Humanos , Masculino , Feminino , Lipoproteínas HDL , Lipoproteínas LDL , Infarto do Miocárdio/epidemiologia , Triglicerídeos , HDL-Colesterol
6.
Physiol Genomics ; 55(1): 16-26, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374174

RESUMO

Lipoprotein subfractions currently represent a new source of cardiovascular disease (CVD) risk markers that may provide more information than conventional lipid measures. We aimed to investigate whether lipoprotein subfractions are associated with coronary atherosclerosis in patients without prior known CVD. Fasting serum samples from 60 patients with suspected coronary artery disease (CAD) were collected before coronary angiography and analyzed by nuclear magnetic resonance (NMR) spectroscopy. The severity of coronary atherosclerosis was quantified by the Gensini score (≤20.5 = nonsignificant coronary atherosclerosis, 20.6-30.0 = intermediate coronary atherosclerosis, ≥30.1 = significant CAD). Differences in lipoprotein subfractions between the three Gensini groups were assessed by two-way ANOVA, adjusted for statin use. Despite no differences in conventional lipid measures between the three Gensini groups, patients with significant CAD had higher apolipoprotein-B/apolipoprotein-A1 ratio, 30% more small and dense low-density lipoprotein 5 (LDL-5) particles, and increased levels of cholesterol, triglycerides, and phospholipids within LDL-5 compared with patients with nonsignificant coronary atherosclerosis and intermediate coronary atherosclerosis (P ≤ 0.001). In addition, the low-density lipoprotein (LDL) cholesterol/high-density lipoprotein cholesterol ratio, and triglyceride levels of LDL 4 were significantly increased in patients with significant CAD compared with patients with nonsignificant coronary atherosclerosis. In conclusion, small and dense lipoprotein subfractions were associated with coronary atherosclerosis in patients without prior CVD. Additional studies are needed to explore whether lipoprotein subfractions may represent biomarkers offering a clinically meaningful improvement in the risk prediction of CAD.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/complicações , Lipoproteínas LDL , Colesterol , Triglicerídeos , Lipoproteínas , Apolipoproteínas
7.
Nat Metab ; 4(10): 1336-1351, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36253618

RESUMO

Mitochondrial respiratory complexes form superassembled structures called supercomplexes. COX7A2L is a supercomplex-specific assembly factor in mammals, although its implication for supercomplex formation and cellular metabolism remains controversial. Here we identify a role for COX7A2L for mitochondrial supercomplex formation in humans. By using human cis-expression quantitative trait loci data, we highlight genetic variants in the COX7A2L gene that affect its skeletal muscle expression specifically. The most significant cis-expression quantitative trait locus is a 10-bp insertion in the COX7A2L 3' untranslated region that increases messenger RNA stability and expression. Human myotubes harboring this insertion have more supercomplexes and increased respiration. Notably, increased COX7A2L expression in the muscle is associated with lower body fat and improved cardiorespiratory fitness in humans. Accordingly, specific reconstitution of Cox7a2l expression in C57BL/6J mice leads to higher maximal oxygen consumption, increased lean mass and increased energy expenditure. Furthermore, Cox7a2l expression in mice is induced specifically in the muscle upon exercise. These findings elucidate the genetic basis of mitochondrial supercomplex formation and function in humans and show that COX7A2L plays an important role in cardiorespiratory fitness, which could have broad therapeutic implications in reducing cardiovascular mortality.


Assuntos
Aptidão Cardiorrespiratória , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
8.
Med Sci Sports Exerc ; 54(9): 1534-1545, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482759

RESUMO

PURPOSE: Low cardiorespiratory fitness (CRF) is a major risk factor for cardiovascular disease (CVD) and a stronger predictor of CVD morbidity and mortality than established risk factors. The genetic component of CRF, quantified as peak oxygen uptake (V̇O 2peak ), is estimated to be ~60%. Unfortunately, current studies on genetic markers for CRF have been limited by small sample sizes and using estimated CRF. To overcome these limitations, we performed a large-scale systematic screening for genetic variants associated with V̇O 2peak . METHODS: A genome-wide association study was performed with BOLT-LMM including directly measured V̇O 2peak from 4525 participants in the HUNT3 Fitness study and 14 million single-nucleotide polymorphisms (SNP). For validation, similar analyses were performed in the United Kingdom Biobank (UKB), where CRF was assessed through a submaximal bicycle test, including ~60,000 participants and ~60 million SNP. Functional mapping and annotation of the genome-wide association study results was conducted using FUMA. RESULTS: In HUNT, two genome-wide significant SNP associated with V̇O 2peak were identified in the total population, two in males, and 35 in females. Two SNP in the female population showed nominally significant association in the UKB. One of the replicated SNP is located in PIK3R5 , shown to be of importance for cardiac function and CVD. Bioinformatic analyses of the total and male population revealed candidate SNP in PPP3CA , previously associated with CRF. CONCLUSIONS: We identified 38 novel SNP associated with V̇O 2peak in HUNT. Two SNP were nominally replicated in UKB. Several interesting genes emerged from the functional analyses, among them one previously reported to be associated with CVD and another with CRF.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Doenças Cardiovasculares/genética , Teste de Esforço/métodos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Consumo de Oxigênio/genética , Aptidão Física
9.
Atherosclerosis ; 343: 51-57, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35101845

RESUMO

BACKGROUND AND AIMS: Low cardiorespiratory fitness is a strong and independent risk factor for cardiovascular disease (CVD). Serum profiling of healthy individuals with large differences in cardiorespiratory fitness may therefore reveal early biomarkers of CVD development. Thus, we aimed to identify circulating lipoprotein subfractions differentially expressed between groups of individuals with large differences in cardiorespiratory fitness, measured as maximal oxygen uptake (VO2max). METHODS: Healthy subjects (40-59 years) were selected from the third wave of the Trøndelag health study (HUNT3) based on having an age-dependent high VO2max (47.1 ± 7.7 mL kg-1·min-1, n = 103) or low VO2max (31.4 ± 4.9 mL kg-1·min-1, n = 108). The individuals were matched on gender, age, physical activity level and fasting status. RESULTS: 99 lipoprotein subfractions were quantified in serum samples using nuclear magnetic resonance (NMR) lipidomics. Standard clinical analyses showed similar levels of total cholesterol, low-density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-cholesterol between the groups, and slightly higher levels of triglycerides in participants with low VO2max. Thirteen lipoprotein subfractions were increased in the low VO2max group compared to the high VO2max group (p < 0.005), including mainly large very low-density lipoprotein (VLDL) subfractions. In addition, triglyceride levels in small-sized HDL and LDL particles were increased in participants with low VO2max. Correlation analyses between VO2max and lipoproteins subfractions displayed a negative correlation between VO2max and the levels of cholesterol and phospholipids in the small HDL particles. The lipoprotein profile of individuals with low VO2max is similar to the profile of insulin resistant individuals. CONCLUSIONS: Low VO2max was associated with enrichment of large VLDL particles, as well as an increased triglycerides content in the small and dense HDL and LDL particles. This unfavorable lipid profile is likely to be involved in the strong associations between VO2max and CVD.


Assuntos
Aptidão Cardiorrespiratória , HDL-Colesterol , Exercício Físico , Humanos , Lipidômica , Triglicerídeos
10.
Prog Cardiovasc Dis ; 63(3): 341-349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32035127

RESUMO

INTRODUCTION: Low maximal oxygen uptake (VO2max) is a strong and independent risk factor for all-cause and cardiovascular disease (CVD) mortality. For other CVD risk factors, numerous genetic association studies have been performed, revealing promising risk markers and new therapeutic targets. However, large genomic association studies on VO2max are still lacking, despite the fact that VO2max has a large genetic component. METHODS: We performed a genetic association study on 123.545 single-nucleotide polymorphisms (SNPs) and directly measured VO2max in 3470 individuals (exploration cohort). Candidate SNPs from the exploration cohort were analyzed in a validation cohort of 718 individuals, in addition to 7 wild-card SNPs. Sub-analyses were performed for each gender. Validated SNPs were used to create a genetic score for VO2max. In silico analyses and genotype-phenotype databases were used to predict physiological function of the SNPs. RESULTS: In the exploration cohort, 41 SNPs were associated with VO2max (p < 5.0 ∗ 10-4). Six of the candidate SNPs were associated with VO2max also in the validation cohort, in addition to three wild-card SNPs (p < 0.05, in men, women or both). The cumulative number of high-VO2max-SNPs correlated negatively with CVD risk factors, e.g. waist-circumference, visceral fat, fat %, cholesterol levels and BMI. In silico analysis indicated that several of the VO2max-SNPs influence gene expression in adipose tissue, skeletal muscle and heart. CONCLUSION: We discovered and validated new SNPs associated with VO2max and proposed possible links between VO2max and CVD. Studies combining several large cohorts with directly measured VO2max are needed to identify more SNPs associated with this phenotype.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares/genética , Tolerância ao Exercício/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Noruega/epidemiologia , Consumo de Oxigênio/genética , Fenótipo , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Adulto Jovem
11.
Metabol Open ; 1: 3-6, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32812949

RESUMO

PURPOSE: The metabolic consequences of carrying a FTO obesity-promoting risk allele have not been fully elucidated and may be confounded by obesity per se. Against this background, we investigated the impact of FTO allele (SNP rs9939609) on fasting and postprandial energy expenditure and fasting substrate expenditure in a study population of uniformly and similarly obese individuals. PROCEDURES: We studied a similar number of participants with BMI classes 2-3 (median BMI 42.8 kg/m2) who were either homozygote for the non-risk allele TT (n = 33, numbers increased by enrichment), heterozygote (AT) (n = 32), or homozygote for the risk allele AA (n = 35). MAJOR FINDINGS: Basal metabolic rate and postprandial energy expenditure did not differ between FTO-groups. However, fasting respiratory quotient (RQ) was increased in those carrying ≥1 risk allele (p = 0.008), whereas postprandial RQ was not. CONCLUSION: In this study population, the FTO-risk allele associates with fasting reduced fat and increased carbohydrate oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA