Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(21)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359896

RESUMO

BACKGROUND: Platelets are major players of thrombosis and inflammation after acute myocardial infarction (AMI). The impact of thrombocytopenia on platelet-induced cellular processes post AMI is not well defined. METHODS: The left anterior descending artery was ligated in C57/Bl6 mice and in two thrombocytopenic mouse models to induce AMI. RESULTS: Platelets from STEMI patients and from C57/Bl6 mice displayed enhanced platelet activation after AMI. This allows platelets to migrate into the infarct but not into the remote zone of the left ventricle. Acute thrombocytopenia by antibody-induced platelet depletion resulted in reduced infarct size and improved cardiac function 24 h and 21 days post AMI. This was due to reduced platelet-mediated inflammation after 24 h and reduced scar formation after 21 days post AMI. The collagen composition and interstitial collagen content in the left ventricle were altered due to platelet interaction with cardiac fibroblasts. Acute inflammation was also significantly reduced in Mpl-/- mice with chronic thrombocytopenia, but cardiac remodeling was unaltered. Consequently, left ventricular function, infarct size and scar formation in Mpl-/- mice were comparable to controls. CONCLUSION: This study discovers a novel role for platelets in cardiac remodeling and reveals that acute but not chronic thrombocytopenia protects left ventricular function post AMI.


Assuntos
Infarto do Miocárdio , Trombocitopenia , Disfunção Ventricular Esquerda , Camundongos , Animais , Remodelação Ventricular , Cicatriz/patologia , Infarto do Miocárdio/complicações , Colágeno , Trombocitopenia/complicações , Inflamação
2.
Diabetologia ; 64(8): 1834-1849, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131781

RESUMO

AIMS/HYPOTHESIS: People with diabetes have an increased cardiovascular risk with an accelerated development of atherosclerosis and an elevated mortality rate after myocardial infarction. Therefore, cardioprotective effects of glucose-lowering therapies are of major importance for the pharmacotherapy of individuals with type 2 diabetes. For sodium-glucose cotransporter 2 inhibitors (SGLT2is), in addition to a reduction in blood glucose, beneficial effects on atherosclerosis, obesity, renal function and blood pressure have been observed. Recent results showed a reduced risk of worsening heart failure and cardiovascular deaths under dapagliflozin treatment irrespective of the diabetic state. However, the underlying mechanisms are yet unknown. Platelets are known drivers of atherosclerosis and atherothrombosis and disturbed platelet activation has also been suggested to occur in type 2 diabetes. Therefore, the present study investigates the impact of the SGLT2i dapagliflozin on the interplay between platelets and inflammation in atherogenesis. METHODS: Male, 8-week-old LDL-receptor-deficient (Ldlr-/-) mice received a high-fat, high-sucrose diabetogenic diet supplemented without (control) or with dapagliflozin (5 mg/kg body weight per day) for two time periods: 8 and 25 weeks. In a first translational approach, eight healthy volunteers received 10 mg dapagliflozin/day for 4 weeks. RESULTS: Dapagliflozin treatment ameliorated atherosclerotic lesion development, reduced circulating platelet-leucocyte aggregates (glycoprotein [GP]Ib+CD45+: 29.40 ± 5.94 vs 17.00 ± 5.69 cells, p < 0.01; GPIb+lymphocyte antigen 6 complex, locus G+ (Ly6G): 8.00 ± 2.45 vs 4.33 ± 1.75 cells, p < 0.05) and decreased aortic macrophage infiltration (1.31 ± 0.62 vs 0.70 ± 0.58 ×103 cells/aorta, p < 0.01). Deeper analysis revealed that dapagliflozin decreased activated CD62P-positive platelets in Ldlr-/- mice fed a diabetogenic diet (3.78 ± 1.20% vs 2.83 ± 1.06%, p < 0.01) without affecting bleeding time (85.29 ± 37.27 vs 89.25 ± 16.26 s, p = 0.78). While blood glucose was only moderately affected, dapagliflozin further reduced endogenous thrombin generation (581.4 ± 194.6 nmol/l × min) × 10-9 thrombin vs 254.1 ± 106.4 (nmol/l × min) × 10-9 thrombin), thereby decreasing one of the most important platelet activators. We observed a direct inhibitory effect of dapagliflozin on isolated platelets. In addition, dapagliflozin increased HDL-cholesterol levels. Importantly, higher HDL-cholesterol levels (1.70 ± 0.58 vs 3.15 ± 1.67 mmol/l, p < 0.01) likely contribute to dapagliflozin-mediated inhibition of platelet activation and thrombin generation. Accordingly, in line with the results in mice, treatment with dapagliflozin lowered CD62P-positive platelet counts in humans after stimulation by collagen-related peptide (CRP; 88.13 ± 5.37% of platelets vs 77.59 ± 10.70%, p < 0.05) or thrombin receptor activator peptide-6 (TRAP-6; 44.23 ± 15.54% vs 28.96 ± 11.41%, p < 0.01) without affecting haemostasis. CONCLUSIONS/INTERPRETATION: We demonstrate that dapagliflozin-mediated atheroprotection in mice is driven by elevated HDL-cholesterol and ameliorated thrombin-platelet-mediated inflammation without interfering with haemostasis. This glucose-independent mechanism likely contributes to dapagliflozin's beneficial cardiovascular risk profile.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Doença da Artéria Coronariana/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/uso terapêutico , Ativação Plaquetária/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Trombina/metabolismo , Adulto , Animais , Glicemia/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , HDL-Colesterol/sangue , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Selectina-P/metabolismo , Contagem de Plaquetas , Reação em Cadeia da Polimerase em Tempo Real , Comportamento de Redução do Risco
3.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114406

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.


Assuntos
Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Redes Reguladoras de Genes , Anti-Inflamatórios/farmacologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/tratamento farmacológico , Fibrinolíticos/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Ativação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Qualidade de Vida , Proteína Reelina , Fator de von Willebrand/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(10): 2391-2403, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787521

RESUMO

OBJECTIVE: Reelin, a secreted glycoprotein, was originally identified in the central nervous system, where it plays an important role in brain development and maintenance. In the cardiovascular system, reelin plays a role in atherosclerosis by enhancing vascular inflammation and in arterial thrombosis by promoting platelet adhesion, activation, and thrombus formation via APP (amyloid precursor protein) and GP (glycoprotein) Ib. However, the role of reelin in hemostasis and arterial thrombosis is not fully understood to date. Approach and Results: In the present study, we analyzed the importance of reelin for cytoskeletal reorganization of platelets and thrombus formation in more detail. Platelets release reelin to amplify alphaIIb beta3 integrin outside-in signaling by promoting platelet adhesion, cytoskeletal reorganization, and clot retraction via activation of Rho GTPases RAC1 (Ras-related C3 botulinum toxin substrate) and RhoA (Ras homolog family member A). Reelin interacts with the collagen receptor GP (glycoprotein) VI with subnanomolar affinity, induces tyrosine phosphorylation in a GPVI-dependent manner, and supports platelet binding to collagen and GPVI-dependent RAC1 activation, PLC gamma 2 (1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2) phosphorylation, platelet activation, and aggregation. When GPVI was deleted from the platelet surface by antibody treatment in reelin-deficient mice, thrombus formation was completely abolished after injury of the carotid artery while being only reduced in either GPVI-depleted or reelin-deficient mice. CONCLUSIONS: Our study identified a novel signaling pathway that involves reelin-induced GPVI activation and alphaIIb beta3 integrin outside-in signaling in platelets. Loss of both, GPVI and reelin, completely prevents stable arterial thrombus formation in vivo suggesting that inhibiting reelin-platelet-interaction might represent a novel strategy to avoid arterial thrombosis in cardiovascular disease.


Assuntos
Plaquetas/enzimologia , Lesões das Artérias Carótidas/enzimologia , Moléculas de Adesão Celular Neuronais/sangue , Proteínas da Matriz Extracelular/sangue , Proteínas do Tecido Nervoso/sangue , Neuropeptídeos/sangue , Fosfolipase C gama/sangue , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Serina Endopeptidases/sangue , Trombose/enzimologia , Proteínas rac1 de Ligação ao GTP/sangue , Proteína rhoA de Ligação ao GTP/sangue , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Coagulação Sanguínea , Lesões das Artérias Carótidas/sangue , Lesões das Artérias Carótidas/etiologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Retração do Coágulo , Citoesqueleto/enzimologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ativação Plaquetária , Proteína Reelina , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Transdução de Sinais , Trombose/sangue , Trombose/etiologia
5.
Int J Mol Sci ; 21(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370031

RESUMO

BACKGROUND: Phospholipase (PL)D1 is crucial for integrin αIIbß3 activation of platelets in arterial thrombosis and TNF-α-mediated inflammation and TGF-ß-mediated collagen scar formation after myocardial infarction (MI) in mice. Enzymatic activity of PLD is not responsible for PLD-mediated TNF-α signaling and myocardial healing. The impact of PLD2 in ischemia reperfusion injury is unknown. METHODS: PLD2-deficient mice underwent myocardial ischemia and reperfusion (I/R). RESULTS: Enhanced integrin αIIbß3 activation of platelets resulted in elevated interleukin (IL)-6 release from endothelial cells in vitro and enhanced IL-6 plasma levels after MI in PLD2-deficient mice. This was accompanied by enhanced migration of inflammatory cells into the infarct border zone and reduced TGF-ß plasma levels after 72 h that might account for enhanced inflammation in PLD2-deficient mice. In contrast to PLD1, TNF-α signaling, infarct size and cardiac function 24 h after I/R were not altered when PLD2 was deleted. Furthermore, TGF-ß plasma levels, scar formation and heart function were comparable between PLD2-deficient and control mice 21 days post MI. CONCLUSIONS: The present study contributes to our understanding about the role of PLD isoforms and altered platelet signaling in the process of myocardial I/R injury.


Assuntos
Plaquetas/metabolismo , Integrinas/metabolismo , Infarto do Miocárdio/complicações , Miocardite/etiologia , Miocardite/metabolismo , Fosfolipase D/deficiência , Animais , Biomarcadores , Sobrevivência Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Expressão Gênica , Integrinas/química , Masculino , Camundongos , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocardite/patologia
6.
Front Physiol ; 9: 1698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555342

RESUMO

Phospholipase D1 is a regulator of tumor necrosis factor-α expression and release upon LPS-induced sepsis and following myocardial infarction (MI). Lack of PLD1 leads to a reduced TNF-α mediated inflammatory response and to enhanced infarct size with declined cardiac function 21 days after ischemia reperfusion (I/R) injury. Deficiency of both PLD isoforms PLD1 and PLD2 as well as pharmacological inhibition of the enzymatic activity of PLD with the PLD inhibitor FIPI protected mice from arterial thrombosis and ischemic brain infarction. Here we treated mice with the PLD inhibitor FIPI to analyze if pharmacological inhibition of PLD after myocardial ischemia protects mice from cardiac damage. Inhibition of PLD with FIPI leads to reduced migration of inflammatory cells into the infarct border zone 24 h after experimental MI in mice, providing first evidence for immune cell migration to be dependent on the enzymatic activity of PLD. In contrast to PLD1 deficient mice, TNF-α plasma level was not altered after FIPI treatment of mice. Consequently, infarct size and left ventricular (LV) function were comparable between FIPI-treated and control mice 21 days post MI. Moreover, cell survival 24 h post I/R was not altered upon FIPI treatment. Our results indicate that the enzymatic activity of PLD is not responsible for PLD mediated TNF-α signaling and myocardial healing after I/R injury in mice. Furthermore, reduced TNF-α plasma levels in PLD1 deficient mice might be responsible for increased infarct size and impaired cardiac function 21 days post MI.

7.
Sci Rep ; 8(1): 10006, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968773

RESUMO

Sepsis is a systemic inflammatory disorder with organ dysfunction and represents the leading cause of mortality in non-coronary intensive care units. A key player in septic shock is Tumor Necrosis Factor-alpha (TNF-α). Phospholipase (PL)D1 is involved in the regulation of TNF-α upon ischemia/reperfusion injury in mice. In this study we analyzed the impact of PLD1 in the regulation of TNF-α, inflammation and organ damage in experimental sepsis. PLD1 deficiency increased survival of mice and decreased vital organ damage after LPS injections. Decreased TNF-α plasma levels and reduced migration of leukocytes and platelets into lungs was associated with reduced apoptosis in lung and liver tissue of PLD1 deficient mice. PLD1 deficient platelets contribute to preserved outcome after LPS-induced sepsis because platelets exhibit an integrin activation defect suggesting reduced platelet activation in PLD1 deficient mice. Furthermore, reduced thrombin generation of PLD1 deficient platelets might be responsible for reduced fibrin formation in lungs suggesting reduced disseminated intravascular coagulation (DIC). The analysis of Pld1fl/fl-PF4-Cre mice revealed that migration of neutrophils and cell apoptosis in septic animals is not due to platelet-mediated processes. The present study has identified PLD1 as a regulator of innate immunity that may be a new target to modulate sepsis.


Assuntos
Lipopolissacarídeos/toxicidade , Fosfolipase D/metabolismo , Choque Séptico/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/imunologia , Plaquetas/metabolismo , Movimento Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Fibrina/metabolismo , Imunidade Inata/imunologia , Inflamação/patologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Fosfolipase D/deficiência , Fosfolipase D/genética , Ativação Plaquetária/genética
8.
Cell Signal ; 40: 210-221, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28943410

RESUMO

Reelin is a secreted glycoprotein and essential for brain development and plasticity. Recent studies provide evidence that Reelin modifies platelet actin cytoskeletal dynamics. In this study we sought to dissect the contribution of Reelin in arterial thrombus formation. Here we analyzed the impact of Reelin in arterial thrombosis ex vivo and in vivo using Reelin deficient (reeler) and wildtype mice. We found that Reelin is secreted upon platelet activation and mediates signaling via glycoprotein (GP)Ib, the amyloid precursor protein (APP) and apolipoprotein E receptor 2 (ApoER2) to induce activation of Akt, extracellular signal-regulated kinase (Erk), SYK and Phospholipase Cγ2. Moreover, our data identifies Reelin as first physiological ligand for platelet APP. Platelets from reeler mice displayed attenuated platelet adhesion and significantly reduced thrombus formation under high shear conditions indicating an important role for Reelin in GPIb-dependent integrin αIIbß3 activation. Accordingly, adhesion to immobilized vWF as well as integrin activation and the phosphorylation of Erk and Akt after GPIb engagement was reduced in Reelin deficient platelets. Defective Reelin signaling translated into protection from arterial thrombosis and cerebral ischemia/reperfusion injury beside normal hemostasis. Furthermore, treatment with an antagonistic antibody specific for Reelin protects wildtype mice from occlusive thrombus formation. Mechanistically, GPIb co-localizes to the major Reelin receptor APP in platelets suggesting that Reelin-induced effects on GPIb signaling are mediated by APP-GPIb interaction. These results indicate that Reelin is an important regulator of GPIb-mediated platelet activation and may represent a new therapeutic target for the prevention and treatment of cardio- and cerebrovascular diseases.


Assuntos
Plaquetas/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/genética , Agregação Plaquetária/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Serina Endopeptidases/genética , Trombose/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Artérias/fisiopatologia , Plaquetas/patologia , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Adesividade Plaquetária/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Receptores de Superfície Celular/genética , Proteína Reelina , Serina Endopeptidases/metabolismo , Transdução de Sinais , Trombose/fisiopatologia
9.
Cell Signal ; 38: 171-181, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28711718

RESUMO

Glycoprotein (GP)Ib is not only required for stable thrombus formation but for platelet-mediated inflammatory responses. Phospholipase (PL)D1 is essential for GPIb-dependent aggregate formation under high shear conditions while nothing is known about PLD1-induced regulation of GPIb in platelet-mediated inflammation and the underlying mechanisms. This study aimed to investigate the relevance of PLD1 for platelet-mediated endothelial and leukocyte recruitment and activation in vitro and in vivo. Pld1-/- platelets showed strongly reduced adhesion to TNFα stimulated endothelial cells (ECs) under high shear conditions ex vivo. Normal cytoskeletal reorganization of Pld1-/- platelets but reduced integrin activation after adhesion to inflamed ECs confirmed that defective integrin activation is responsible for reduced platelet adhesion to ECs. This, together with significantly reduced CD40L expression on platelets led to reduced chemotactic and adhesive properties of ECs in vitro. Under flow conditions, recruitment of leukocytes to collagen-adherent platelets was reduced. Under inflammatory conditions in vivo, reduced platelet and leukocyte recruitment and arrest to the injured carotid artery was observed in Pld1-/- mice. In a second in vivo model of venous thrombosis, platelet adhesion to activated endothelial cells was reduced while leukocyte recruitment was attenuated in PLD1 deficient mice. Mechanistically, PLD1 modulates PLCγ2 phosphorylation and integrin activation via Src kinases without affecting vWF binding to GPIb. Thus, PLD1 is important for GPIb-induced inflammatory processes of platelets and might be a promising target to reduce platelet-mediated inflammation.


Assuntos
Plaquetas/enzimologia , Plaquetas/patologia , Inflamação/enzimologia , Inflamação/patologia , Fosfolipase D/metabolismo , Animais , Adesão Celular , Quimiotaxia , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Leucócitos/patologia , Camundongos , Fosfolipase C gama/metabolismo , Fosfolipase D/deficiência , Fosforilação , Complexo Glicoproteico GPIb-IX de Plaquetas , Resistência ao Cisalhamento , Transdução de Sinais , Quinases da Família src/metabolismo
10.
Cell Physiol Biochem ; 41(6): 2133-2149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441661

RESUMO

BACKGROUND/AIMS: Platelets are essential mediators of hemostasis to avoid excessive blood loss. Cirrhosis and chronic liver diseases are characterized by alterations in hemostasis. Alterations in the secondary hemostasis have been well studied, while defects in primary hemostasis, especially the consequences of cholestatic liver disease on platelet function are not well defined. METHODS: After bile duct ligation (BDL) platelet activation and thrombus formation were analyzed in mice. RESULTS: BDL in mice had a moderate effect on platelet counts; however, intrinsic platelet activation was strongly reduced upon activation of the collagen receptor GPVI at early time points. 7 days after bile duct ligation, platelets displayed an almost complete loss of activation with reduced agonist-triggered release of alpha and dense granules and expression of integrin αIIbß3 on the platelet surface. This activation defects resulted in strongly reduced thrombus formation under flow, reduced platelet adhesion to fibrinogen and bleeding complications in BDL mice as measured by tail bleeding experiments. Mechanistically, elevated nitric oxide and prostacyclin levels induced phosphorylation of Vasodilator-stimulated phosphoprotein (VASP), an established inhibitor of platelet activation. Furthermore increased tissue plasminogen activator in plasma of BDL mice led to enhanced plasmin levels that might be responsible for reduced glycoprotein expression of BDL platelets. Besides, high amounts of bile acids contribute to defective signal transduction as shown in platelets from mice fed with a cholic acid diet. CONCLUSIONS: Cholestatic liver disease induces multiple platelet activation defects and impairs thrombus formation responsible for bleeding complications at least in mice.


Assuntos
Plaquetas/metabolismo , Colestase/patologia , Animais , Plaquetas/citologia , Moléculas de Adesão Celular , Colestase/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epoprostenol/análise , Hemorragia/etiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Óxido Nítrico/metabolismo , Fosfoproteínas , Fosforilação , Ativação Plaquetária , Contagem de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Baço/patologia , Trombose/metabolismo , Trombose/patologia , Ativador de Plasminogênio Tecidual/sangue
11.
Cell Signal ; 28(8): 967-78, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27117132

RESUMO

The Rho family of small GTPases has been analyzed in cardiac physiology and pathophysiology including myocardial infarction (MI) in the last years. Contradictory results show either a protective or a declined effect of RhoA and the RhoA effector Rho-associated protein kinase (ROCK) in myocardial ischemia and reperfusion injury that is associated with cardiomyocyte survival and caspase-3 activation. Cardiac-specific deletion of Rac1 reduced ischemia reperfusion injury in diabetic hearts, whereas cardiomyocyte specific overexpression of active Rac1 predisposes the heart to increased myocardial injury with enhanced contractile dysfunction. GTPase-activating proteins (GAPs) control the activation of Rho proteins through stimulation of GTP hydrolysis. However, the impact of GAPs in myocardial ischemia and reperfusion injury remains elusive. Here we analyzed the role of oligophrenin1 (OPHN1), a RhoGAP with Bin/Amphiphysin/Rvs (BAR) domain known to regulate the activity of RhoA, Rac1 and Cdc42 in MI. The expression of Ophn1, RhoA and Rac1 is strongly upregulated 24h after myocardial ischemia. Loss of OPHN1 induced enhanced activity of Rho effector molecules leading to elevated cardiomyocyte apoptosis and increased migration of inflammatory cells into the infarct border zone of OPHN1 deficient mice. Consequently, echocardiography 24h after myocardial ischemia revealed declined left ventricle function in OPHN1 deficient mice. Our results indicate that OPHN1 mediated regulation of RhoA, Rac1 and Cdc42 is crucial for the preservation of cardiac function after myocardial injury.


Assuntos
Apoptose , Cardiotônicos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Inflamação/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Proteínas Nucleares/metabolismo , Animais , Movimento Celular , Citocinas/metabolismo , Proteínas do Citoesqueleto/deficiência , Proteínas Ativadoras de GTPase/deficiência , Coração/fisiopatologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Proteínas Nucleares/deficiência , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Cell Signal ; 26(9): 2040-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928203

RESUMO

Platelet activation and thrombus formation play a critical role in primary hemostasis but also represent a pathophysiological mechanism leading to acute thrombotic vascular occlusions. Besides, platelets modulate cellular processes including inflammation, angiogenesis and neurodegeneration. On the other hand, platelet activation and thrombus formation are altered in different diseases leading to either bleeding complications or pathological thrombus formation. For many years platelets have been considered to play a role in neuroinflammatory diseases such as Alzheimer's disease (AD). AD is characterized by deposits of amyloid-ß (Aß) and strongly related to vascular diseases with platelets playing a critical role in the progression of AD because exposure of platelets to Aß induces platelet activation, platelet Aß release, and enhanced platelet adhesion to collagen in vitro and at the injured carotid artery in vivo. However, the molecular mechanisms and the relation between vascular pathology and amyloid-ß plaque formation in the pathogenesis of AD are not fully understood. Compelling evidence is suggestive for altered platelet activity in AD patients. Thus we analyzed platelet activation and thrombus formation in aged AD transgenic mice (APP23) known to develop amyloid-ß deposits in the brain parenchyma and cerebral vessels. As a result, platelets are in a pre-activated state in blood of APP23 mice and showed strongly enhanced integrin activation, degranulation and spreading kinetics on fibrinogen surfaces upon stimulation. This enhanced platelet signaling translated into almost unlimited thrombus formation on collagen under flow conditions in vitro and accelerated vessel occlusion in vivo suggesting that these mice are at high risk of arterial thrombosis leading to cerebrovascular and unexpectedly to cardiovascular complications that might be also relevant in AD patients.


Assuntos
Plaquetas/citologia , Doença de Alzheimer , Animais , Plaquetas/metabolismo , Adesão Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Integrinas/metabolismo , Megacariócitos/citologia , Camundongos , Camundongos Transgênicos , Selectina-P/metabolismo , Fenótipo , Ativação Plaquetária , Trombina/farmacologia , Trombose/metabolismo , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA