RESUMO
Turicibacter sanguinis was isolated in 2002 from the blood of a patient with appendicitis. We report a bacteremia with T. sanguinis and Desulfovibrio desulfuricans in a patient with ulcerative colitis. T. sanguinis grew in thioglycolate media and identification was confirmed with 16S rRNA sequencing.
RESUMO
Candida auris poses a global public health challenge, causing multiple outbreaks within healthcare facilities. Despite advancements in strain typing for various infectious diseases, a consensus on the genetic relatedness threshold for identifying C. auris transmission in local hospital outbreaks remains elusive. We investigated genetic variations within our local isolate collection using whole-genome-based single nucleotide polymorphism (SNP) phylogenetic analysis. A total of 74 C. auris isolates were subjected to whole-genome sequencing (WGS) and SNP phylogenetic analysis via the QIAGEN CLC Genomics Workbench. Isolates included known related strains from the same patient, strains from different hospitals, strains from our hospital patients with no epidemiological link, and 19 patient isolates from a recent C. auris outbreak. All but three isolates were identified to be Clade IV. By examining the genetic diversities of C. auris within patients and between patients, we identified a SNP variation range of 0-13 for identifying related isolates. During an outbreak investigation, utilizing this range, maximum likelihood phylogenetic analysis revealed two distinct clusters that aligned with the epidemiological links. Determining a SNP variation range to delineate genetic relatedness among isolates is crucial for the application of WGS and SNP phylogenetic analysis in identifying C. auris transmission during hospital outbreak investigations. The use of WGS SNP phylogenetic analysis via the CLC Genomics Workbench has emerged as a valuable method for typing C. auris in clinical microbiology laboratories.
Assuntos
Candida auris , Candidíase , Infecção Hospitalar , Surtos de Doenças , Filogenia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Humanos , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/transmissão , Candidíase/microbiologia , Candidíase/epidemiologia , Candidíase/transmissão , Candida auris/genética , Genoma Fúngico , Hospitais , Epidemiologia Molecular/métodos , GenótipoRESUMO
OBJECTIVE: Aerococcus urinae antimicrobial susceptibility testing can be performed via broth microdilution with Mueller-Hinton broth supplemented with lysed horse blood. We sought to compare this with the commonly used gradient diffusion method. METHODS: We compared broth microdilution with Mueller-Hinton broth supplemented with lysed horse blood and gradient diffusion via Mueller-Hinton agar supplemented with sheep blood for 190 A. urinae isolates against 16 antimicrobials. RESULTS: No antimicrobials demonstrated more than 90% essential and categorical agreement, and fewer than 3% demonstrated major and very major error rates. Trimethoprim-sulfamethoxazole demonstrated an 81% major error rate and ceftriaxone demonstrated a 76% very major error rate. Agar dilution with lysed horse blood was performed for trimethoprim-sulfamethoxazole against 94 isolates and showed 100% susceptibility, consistent with previous studies. CONCLUSIONS: Given its limitations in detecting resistant strains, our findings cannot support the routine use of gradient diffusion with Mueller-Hinton agar supplemented with sheep blood for A. urinae in lieu of the Clinical and Laboratory Standards Institute method. Our results suggest that A. urinae is usually susceptible to penicillin, linezolid, tetracycline, and vancomycin. Future studies should evaluate alternative testing methods for clinical microbiology laboratories.
Assuntos
Aerococcus , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Aerococcus/efeitos dos fármacos , Aerococcus/isolamento & purificação , Animais , Ovinos , Meios de Cultura/química , Cavalos , Ágar , HumanosRESUMO
INTRODUCTION: In patients with suspected pneumonia who are tested with respiratory culture and multiplex PCR, the potential added benefit of next-generation sequencing technologies is unknown. METHODS: This was a single-center, retrospective study in which residual bronchoalveolar lavage (BAL) specimens were retrieved from hospitalized patients. We compared its research-use-only Respiratory Pathogen Illumina Panel (RPIP) results to culture and BioFire® FilmArray Pneumonia Panel (BioFire® PN) results from critically ill patients. RESULTS: In total, 47 BAL specimens from 47 unique patients were included. All BAL samples were tested with culture and multiplex PCR. In total, 38 of the 47 BALs were consistent with a clinical picture of pneumonia per chart review. Additional testing of the 38 samples with the RPIP identified a new bacterium in 20 patients, a new virus in 4 patients, a new bacterium plus virus in 4 patients, and no additional organisms in 10 patients. In 17 (44.5%) of these patients, the RPIP results could have indicated an antibiotic addition. Compared with cultures, the RPIP had an overall sensitivity of 64% and specificity of 98%, with a 0% sensitivity for fungus and 14% sensitivity for mycobacteria. Compared with BioFire® PN, the RPIP was 70% sensitive and 99% specific, with a 74% sensitivity for bacteria and 33% sensitivity for viruses. The RPIP was 29% more sensitive for HAP/VAP bacterial targets compared with CAP. CONCLUSIONS: Emerging NGS technologies such as the RPIP may have a role in identifying the etiology of pneumonia, even when patients have BAL culture and multiplex PCR results available. Similar to prior studies evaluating RPIP, our study showed this platform lacked sensitivity when compared with cultures, particularly for fungi and mycobacteria. However, the high specificity of the test can be leveraged when clinicians are seeking to rule out certain infections.
RESUMO
Drug-resistant shigellosis is increasing, particularly among men who have sex with men (MSM). During July-October 2022, an extended-spectrum beta-lactamase producing Shigella sonnei cluster of 9 patients was identified in Chicago, of whom 8 were MSM and 6 were festival attendees. The cluster also included 4 domestic travelers to Chicago. Sexual health care for MSM should include shigellosis diagnosis and prevention.
RESUMO
Parvimonas micra is an obligate anaerobe that forms part of the normal gastrointestinal flora. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF) and 16s ribosomal RNA gene sequencing has led to increased detection of many rare anaerobic isolates, including Parvimonas micra. Typical risk factors for Parvimonas micra bacteremia include dental procedures or spinal instrumentation. Here, we report a case of Parvimonas micra spondylodiscitis and psoas abscess in a patient with no obvious antecedent risk factors and explore the challenges in isolation of the organism from tissue samples.
RESUMO
Mycobacterium xenopi is a slow growing non-tuberculous mycobacterium (NTM) isolated from water systems and has been associated with pseudo-outbreaks and pulmonary infections in humans. We observed a cluster of six respiratory cultures positive for M. xenopi within a six-month period at our institution, approximately double our normal isolation rate of this organism. Only three of the six cases met clinical, radiographic, and microbiologic criteria for NTM infection. An investigation led by our hospital's Healthcare Epidemiology and Infection Program found no epidemiologic link between the six patients. Three isolates underwent whole-genome sequencing (WGS) and phylogenetic analysis confirmed they were non-clonal. In vitro susceptibility data found the isolates were sensitive to macrolides, moxifloxacin, and rifabutin. Our findings suggest that isolation of M. xenopi from pulmonary specimens may be increasing, further defines the genomic population structure of this potentially emerging infection, and establishes WGS as a useful tool for outbreak investigation strain typing.
RESUMO
BACKGROUND: Spectra™ VRE agar (Remel, Lenexa, KS) is a chromogenic agar that is FDA approved for screening patients for VRE colonization. The package insert recommends confirming isolates with identification and susceptibility testing, but confirming every culture delays time to result. Given the agar's historic high specificity for E. faecium isolates, we theorized the agar could be utilized as a stand-alone screening to minimize reagents and time. AIM: Our laboratory sought to develop a workflow to optimize the use of the medium. METHODS: We plated 3,815 rectal swabs to the Spectra VRE agar and compared results to traditional identification and susceptibility testing. RESULTS: Dark blue or purple colonies on the agar demonstrated a sensitivity of 98% and specificity of 85% for detection of VRE faecium, but light blue colonies were significantly less specific for E. faecalis. CONCLUSIONS: We streamlined our workflow to accept dark blue or purple colonies as VRE faecium and plan to perform additional testing only on light blue colonies. Interestingly, higher quantity of growth increased the accuracy of the agar. In the future, growth quantity may be used to further streamline the workflow once more data is obtained.
Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Enterococcus faecalis , Ágar , Vancomicina , Fluxo de Trabalho , Resistência a Vancomicina , Infecções por Bactérias Gram-Positivas/diagnóstico , Antibacterianos/farmacologiaRESUMO
The marine bacterium Vibrio vulnificus infects humans via food or water contamination, leading to serious manifestations, including gastroenteritis, wound infections, and septic shock. Previous studies suggest phylogenetic Lineage 1 isolates with the vcgC allele of the vcg gene cause human infections, whereas Lineage 2 isolates with the vcgE allele are less pathogenic. Mouse studies suggest that some variants of the primary toxin could drive more serious infections. A collection of 109 V. vulnificus United States human clinical isolates from 2001 to 2019 with paired clinical outcome data were assembled. The isolates underwent whole-genome sequencing, multilocus-sequence phylogenetic analysis, and toxinotype analysis of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin. In contrast to prior reports, clinical isolates were equally distributed between lineages. We found no correlation between phylogenetic lineage or MARTX toxinotype and disease severity. Infections caused by isolates in Lineage 1 demonstrated a borderline statistically significant higher mortality. Lineage 1 isolates had a trend toward a higher proportion of M-type MARTX toxins compared with Lineage 2, although this was not statistically significant. IMPORTANCE Vibrio vulnificus is an aquatic pathogen that is capable of causing severe disease in humans. Previous studies have suggested that pathogenic isolates were restricted to certain phylogenetic lineages and possibly toxinotype. Our study demonstrated that phylogenetic lineage and multifunctional autoprocessing repeats-in-toxin (MARTX) toxinotype do not predict severity of infection. V. vulnificus strains capable of causing severe human disease are not concentrated in Lineage 1 but are genetically diverse. Thus, food surveillance based on lineage type or toxinotype may not be an appropriate intervention measure to control this rare but serious infection.
Assuntos
Toxinas Bacterianas , Vibrio vulnificus , Animais , Humanos , Camundongos , Toxinas Bacterianas/genética , Deriva Genética , FilogeniaRESUMO
Background: Understanding the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination will enable accurate counseling and inform evolving vaccination strategies. Little is known about antibody response following booster vaccination in people living with HIV (PLWH). Methods: We enrolled SARS-CoV-2 vaccinated PLWH and controls without HIV in similar proportions based on age and comorbidities. Participants completed surveys on prior SARS-CoV-2 infection, vaccination, and comorbidities, and provided self-collected dried blood spots (DBS). Quantitative anti-spike IgG and surrogate viral neutralization assays targeted wild-type (WT), Delta, and Omicron variants. We also measured quantitative anti-nucleocapsid IgG. The analysis population had received full SARS-CoV-2 vaccination plus one booster dose. Bivariate analyses for continuous outcomes utilized Wilcoxon tests and multivariate analysis used linear models. Results: The analysis population comprised 140 PLWH and 75 controls with median age 58 and 55 years, males 95% and 43%, and DBS collection on 112 and 109 days after the last booster dose, respectively. Median CD4 count among PLWH was 760 cells/mm3 and 91% had an undetectable HIV-1 viral load. Considering WT, Delta, and Omicron variants, there was no significant difference in mean quantitative anti-spike IgG between PLWH (3.3, 2.9, 1.8) and controls (3.3, 2.9, 1.8), respectively (p-values=0. 771, 0.920, 0.708). Surrogate viral neutralization responses were similar in PLWH (1.0, 0.9, and 0.4) and controls (1.0, 0.9, 0.5), respectively (p-values=0.594, 0.436, 0.706). Conclusions: PLWH whose CD4 counts are well preserved and persons without HIV have similar anti-spike IgG antibody levels and viral neutralization responses after a single SARS-CoV-2 booster vaccination.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Infecções por HIV , Humanos , Masculino , COVID-19/prevenção & controle , Imunoglobulina G , SARS-CoV-2 , Vacinação , Feminino , Pessoa de Meia-IdadeRESUMO
Four-factor prothrombin complex concentrate is approved for use of life-threatening bleeding secondary to vitamin K antagonism in adults. We describe the use of four-factor prothrombin complex concentrate for hemostasis in a 6-week-old child with life-threatening vitamin K dependent-bleeding who never received vitamin K prophylaxis at birth.