Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Mult Scler Relat Disord ; 87: 105688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824793

RESUMO

OBJECTIVES: Gradual expansion of multiple sclerosis lesions over time is known to have a significant impact on disease progression. However, accurately quantifying the volume changes in chronic lesions presents challenges due to their slow rate of progression and the need for longitudinal segmentation. Our study addresses this by estimating the expansion of chronic lesions using data collected over a 1-2 year period and exploring imaging markers that do not require longitudinal lesion segmentation. METHODS: Pre- and post-gadolinium 3D-T1, 3D FLAIR and diffusion tensor images were acquired from 42 patients with MS. Lesion expansion, stratified by the severity of tissue damage as measured by mean diffusivity change, was analysed between baseline and 48 months (Progressive Volume/Severity Index, PVSI). Central brain atrophy (CBA) and the degree of tissue loss inside chronic lesions (measured by the change of T1 intensity and mean diffusivity (MD)) were used as surrogate markers. RESULTS: CBA measured after 2 years of follow-up estimated lesion expansion at 4 years with a high degree of accuracy (r = 0.82, p < 0.001, ROC area under the curve 0.92, sensitivity of 94 %, specificity of 85 %). Increased MD within chronic lesions measured over 2 years was strongly associated with future expansion (r = 0.77, p < 0.001, ROC area under the curve 0.87, sensitivity of 81 % and specificity of 81 %). In contrast, change in lesion T1 hypointensity poorly explained future PVSI (best sensitivity and specificity 60 % and 59 % respectively). INTERPRETATION: CBA and, to a lesser extent, the change in MD within chronic MS lesions, measured over a period of 2 years, can provide a reliable and sensitive estimate of the extent and severity of chronic lesion expansion.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Progressão da Doença , Esclerose Múltipla , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia , Índice de Gravidade de Doença
2.
Mult Scler ; 30(4-5): 496-504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318807

RESUMO

BACKGROUND AND OBJECTIVE: We explored dynamic changes in the choroid plexus (CP) in patients with relapsing-remitting multiple sclerosis (RRMS) and assessed its relationship with chronic lesion expansion and atrophy in various brain compartments. METHODS: Fifty-seven RRMS patients were annually assessed for a minimum of 48 months with 3D FLAIR, pre- and post-contrast 3D T1 and diffusion-weighted magnetic resonance imaging (MRI). The CP was manually segmented at baseline and last follow-up. RESULTS: The volume of CP significantly increased by 1.4% annually. However, the extent of CP enlargement varied considerably among individuals (ranging from -3.6 to 150.8 mm3 or -0.2% to 6.3%). The magnitude of CP enlargement significantly correlated with central (r = 0.70, p < 0.001) and total brain atrophy (r = -0.57, p < 0.001), white (r = -0.61, p < 0.001) and deep grey matter atrophy (r = -0.60, p < 0.001). Progressive CP enlargement was significantly associated with the volume and extent of chronic lesion expansion (r = 0.60, p < 0.001), but not with the number or volume of new lesions. CONCLUSION: This study provides evidence of progressive CP enlargement in patients with RRMS. Our findings also demonstrate that enlargement of the CP volume is linked to the expansion of chronic lesions and neurodegeneration of periventricular white and grey matter in RRMS patients.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Plexo Corióideo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Atrofia/patologia , Esclerose Múltipla/patologia
3.
NPJ Digit Med ; 6(1): 196, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857813

RESUMO

Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC -0.32% vs -0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.

4.
Mol Neurobiol ; 60(12): 7222-7237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542647

RESUMO

Glaucoma is a leading cause of permanent blindness worldwide and is characterized by neurodegeneration linked to progressive retinal ganglion cell (RGC) death, axonal damage, and neuroinflammation. Glutamate excitotoxicity mediated through N-methyl-D-aspartate (NMDA) receptors plays a crucial role in glaucomatous RGC loss. Sphingosine 1-phosphate receptors (S1PRs) are important mediators of neurodegeneration and neuroinflammation in the brain and the retina. Siponimod is an immunomodulatory drug for multiple sclerosis and is a selective modulator of S1PR subtypes 1 and 5 and has been shown to have beneficial effects on the central nervous system (CNS) in degenerative conditions. Our previous study showed that mice administered orally with siponimod protected inner retinal structure and function against acute NMDA excitotoxicity. To elucidate the molecular mechanisms behind these protective effects, we investigated the inflammatory pathways affected by siponimod treatment in NMDA excitotoxicity model. NMDA excitotoxicity resulted in the activation of glial cells coupled with upregulation of the inflammatory NF-kB pathway and increased expression of TNFα, IL1-ß, and IL-6. Siponimod treatment significantly reduced glial activation and suppressed the pro-inflammatory pathways. Furthermore, NMDA-induced activation of NLRP3 inflammasome and upregulation of neurotoxic inducible nitric oxide synthase (iNOS) were significantly diminished with siponimod treatment. Our data demonstrated that siponimod induces anti-inflammatory effects via suppression of glial activation and inflammatory singling pathways that could protect the retina against acute excitotoxicity conditions. These findings provide insights into the anti-inflammatory effects of siponimod in the CNS and suggest a potential therapeutic strategy for neuroinflammatory conditions.


Assuntos
Glaucoma , N-Metilaspartato , Camundongos , Animais , N-Metilaspartato/metabolismo , Doenças Neuroinflamatórias , Retina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Glaucoma/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo
5.
Mult Scler ; 29(4-5): 540-548, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36876595

RESUMO

OBJECTIVES: We investigated choroid plexus (CP) volume in patients presenting with optic neuritis (ON) as a clinically isolated syndrome (CIS), compared to a cohort with established relapsing-remitting multiple sclerosis (RRMS) and healthy controls (HCs). METHODS: Three-dimensional (3D) T1, T2-FLAIR and diffusion-weighted sequences were acquired from 44 ON CIS patients at baseline, 1, 3, 6 and 12 months after the onset of ON. Fifty RRMS patients and 50 HCs were also included for comparison. RESULTS: CP volumes was larger in both ON CIS and RRMS groups compared to HCs, but not significantly different between ON CIS and RRMS patients (analysis of covariance (ANCOVA) adjusted for multiple comparisons). Twenty-three ON CIS patients who converted to clinically definite MS (MS) demonstrated CP volume similar to RRMS patients, but significantly larger compared to HCs. In this sub-group, CP volume was not associated with the severity of optic nerve inflammation or long-term axonal loss, not with brain lesion load. A transient increase of CP volume was observed following an occurrence of new MS lesions on brain magnetic resonance imaging (MRI). INTERPRETATION: Enlarged CP can be observed very early in a disease. It transiently reacts to acute inflammation, but not associated with the degree of tissue destruction.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neurite Óptica , Humanos , Plexo Corióideo/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Encéfalo/patologia , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética/métodos , Inflamação/patologia , Esclerose Múltipla/patologia
6.
FASEB J ; 37(1): e22710, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520045

RESUMO

Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Neural Regen Res ; 18(4): 840-848, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204852

RESUMO

Sphingosine-1-phosphate receptor (S1PR) signaling regulates diverse pathophysiological processes in the central nervous system. The role of S1PR signaling in neurodegenerative conditions is still largely unidentified. Siponimod is a specific modulator of S1P1 and S1P5 receptors, an immunosuppressant drug for managing secondary progressive multiple sclerosis. We investigated its neuroprotective properties in vivo on the retina and the brain in an optic nerve injury model induced by a chronic increase in intraocular pressure or acute N-methyl-D-aspartate excitotoxicity. Neuronal-specific deletion of sphingosine-1-phosphate receptor (S1PR1) was carried out by expressing AAV-PHP.eB-Cre recombinase under Syn1 promoter in S1PR1flox/flox mice to define the role of S1PR1 in neurons. Inner retinal electrophysiological responses, along with histological and immunofluorescence analysis of the retina and optic nerve tissues, indicated significant neuroprotective effects of siponimod when administered orally via diet in chronic and acute optic nerve injury models. Further, siponimod treatment showed significant protection against trans-neuronal degenerative changes in the higher visual center of the brain induced by optic nerve injury. Siponimod treatment also reduced microglial activation and reactive gliosis along the visual pathway. Our results showed that siponimod markedly upregulated neuroprotective Akt and Erk1/2 activation in the retina and the brain. Neuronal-specific deletion of S1PR1 enhanced retinal and dorsolateral geniculate nucleus degenerative changes in a chronic optic nerve injury condition and attenuated protective effects of siponimod. In summary, our data demonstrated that S1PR1 signaling plays a vital role in the retinal ganglion cell and dorsolateral geniculate nucleus neuronal survival in experimental glaucoma, and siponimod exerts direct neuroprotective effects through S1PR1 in neurons in the central nervous system independent of its peripheral immuno-modulatory effects. Our findings suggest that neuronal S1PR1 is a neuroprotective therapeutic target and its modulation by siponimod has positive implications in glaucoma conditions.

8.
Front Neurol ; 13: 945034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158958

RESUMO

Background: Predicting long-term visual outcomes and axonal loss following acute optic neuritis (ON) is critical for choosing treatment. Predictive models including all clinical and paraclinical measures of optic nerve dysfunction following ON are lacking. Objectives: Using a prospective study method, to identify 1 and 3 months predictors of 6 and 12 months visual outcome (low contrast letter acuity 2.5%) and axonal loss [retinal nerve fiber layer thickness and multifocal evoked potential (mfVEP) amplitude] following acute ON. Methods: In total, 37 patients of acute ON onset were evaluated within 14 days using between-eye asymmetry of visual acuity, color vision (Ishihara plates), optical coherence tomography, mfVEP, and optic nerve magnetic resonance imaging [magnetic transfer ratio (MTR) and diffusion tensor imaging (DTI)]. Results: Visual outcome at 6 and 12 months was best predicted by Ishihara asymmetry at 1 and 3 months following ON onset. Axonal loss at 6 and 12 months was reliably predicted by Ishihara asymmetry at 1 month. Optic nerve MTR and DTI at 3 months post-acute ON could predict axonal loss at 6 and 12 months. Conclusions: Simple Ishihara asymmetry testing 1 month after acute ON onset can best predict visual outcome and axonal loss at 6 and 12 months in a clinical or research setting.

9.
Ann Clin Transl Neurol ; 9(10): 1528-1537, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36056634

RESUMO

OBJECTIVES: Recent studies suggested that the expansion of long-standing multiple sclerosis (MS) lesions and an enlargement of choroid plexus may be linked to chronic inflammation and microglial activation. We investigated the potential association between plexus volume and subsequent lesion expansion in patients with relapsing-remitting MS. METHODS: Pre- and post-gadolinium 3D-T1, 3D FLAIR and diffusion tensor images were acquired from 49 patients. Choroid plexus (CP) volume (normalised by Total Intracranial Volume, TIV) and lesion activity were analysed between baseline and 48 months. In addition, plexus volume was measured in 40 healthy controls of similar age and gender. RESULTS: Baseline CP/TIV ratio was significantly larger in RRMS patients compared to normal controls (p < 0.001). CP/TIV ratio remained stable in RRMS patients during follow-up period. There was a strong correlation between baseline CP/TIV ratio and subsequent rate of chronic lesion expansion (p < 0.001), which was stronger in close proximity to CSF. A cut-off of 98 × 10-5 CP/TIV ratio predicted future lesion expansion with a sensitivity of 85% and specificity of 76%. CP/TIV ratio larger than a cut-off was associated with >8-fold increased risk of chronic lesion expansion. Baseline CP/TIV ratio was also associated with change in Mean Diffusivity (MD) inside of chronic lesions. Furthermore, baseline CP/TIV ratio significantly correlated with central brain atrophy. There was, however, no correlation between CP/TIV ratio and volume of new lesions. INTERPRETATION: Our data demonstrate that baseline CP/TIV ratio predicts subsequent expansion of chronic periventricular MS lesions and associated tissue damage within and outside of chronic lesions.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Doenças Neurodegenerativas , Atrofia/patologia , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/patologia , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Doenças Neurodegenerativas/patologia
10.
Proteomics ; 22(19-20): e2100247, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866514

RESUMO

Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.


Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla , Animais , Camundongos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/uso terapêutico , Proteoma/metabolismo , Endocanabinoides/metabolismo , Encéfalo/metabolismo , Esclerose Múltipla/metabolismo , Metabolismo Energético , Autofagia , Interleucina-12/metabolismo
11.
Mult Scler ; 28(13): 2038-2045, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35861244

RESUMO

BACKGROUND: Change in ventricular volume has been suggested as surrogate measure of central brain atrophy (CBA) applicable to the everyday management of multiple sclerosis (MS) patients. OBJECTIVES: We investigated the contribution of inflammatory activity (including the severity of lesional tissue damage) to CBA. METHODS: Fifty patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled. Lesional activity during 4 years of follow-up was analysed using custom-build software, which segmented expanding part of the chronic lesions, new confluent lesions and new free-standing lesions. The degree of lesional tissue damage was assessed by change in mean diffusivity (MD). Volumetric change of lateral ventricles was used to measure CBA. RESULTS: During follow-up, ventricles expanded on average by 12.6% ± 13.7% (mean ± SD). There was a significant increase of total lesion volume, 69.3% of which was due to expansion of chronic lesions. Correlation between volume of combined lesional activity and CBA (r2 = 0.67) increased when lesion volume was adjusted by the degree of tissue damage severity (r2 = 0.81). Regression analysis explained 90% of CBA variability, revealing that chronic lesion expansion was by far the largest contributor to ventricular enlargement. DISCUSSION: CBA is almost entirely explained by the combination of the volume and severity of lesional activity. The expansion of chronic lesions plays a central role in this process.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Atrofia/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Imagem de Difusão por Ressonância Magnética , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Doenças Neurodegenerativas/patologia
12.
Mult Scler ; 28(10): 1504-1514, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35296170

RESUMO

BACKGROUND AND OBJECTIVES: Expansion of chronic lesions in multiple sclerosis (MS) patients and recently described cerebrospinal fluid (CSF)-related gradient of tissue damage are linked to microglial activation. The aim of this study was to investigate whether lesion expansion is associated with proximity to ventricular CSF spaces. METHODS: Pre- and post-gadolinium three-dimensional (3D)-T1, 3D FLAIR and diffusion tensor images were acquired from 36 relapsing-remitting MS (RRMS) patients. Lesional activity was analysed between baseline and 48 months at different distances from the CSF using successive 1 mm thick concentric bands radiating from the ventricles. RESULTS: Voxel-based analysis of the rate of lesion expansion demonstrated a clear periventricular gradient decreasing away from the ventricles. This was particularly apparent when lesions of equal diameter were analysed. Periventricular lesional tissue showed higher degree of tissue destruction at baseline that significantly increased during follow-up in bands close to CSF. This longitudinal change was proportional to degree of lesion expansion. Lesion-wise analysis revealed a gradual, centrifugal decrease in the proportion of expanding lesions from the immediate periventricular zone. DISCUSSION: Our data suggest that chronic white matter lesions in close proximity to the ventricles are more destructive, show a higher degree of expansion at the lesion border and accelerated tissue loss in the lesion core.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia
13.
Transl Vis Sci Technol ; 11(1): 10, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35006263

RESUMO

Purpose: Clinical trials for remyelination in multiple sclerosis (MS) require an imaging biomarker. The multifocal visual evoked potential (mfVEP) is an accurate technique for measuring axonal conduction; however, it produces large datasets requiring lengthy analysis by human experts to detect measurable responses versus noisy traces. This study aimed to develop a machine-learning approach for the identification of true responses versus noisy traces and the detection of latency peaks in measurable signals. Methods: We obtained 2240 mfVEP traces from 10 MS patients using the VS-1 mfVEP machine, and they were classified by a skilled expert twice with an interval of 1 week. Of these, 2025 (90%) were classified consistently and used for the study. ResNet-50 and VGG16 models were trained and tested to produce three outputs: no signal, up-sloped signal, or down-sloped signal. Each model ran 1000 iterations with a stochastic gradient descent optimizer with a learning rate of 0.0001. Results: ResNet-50 and VGG16 had false-positive rates of 1.7% and 0.6%, respectively, when the testing dataset was analyzed (n = 612). The false-negative rates were 8.2% and 6.5%, respectively, against the same dataset. The latency measurements in the validation and testing cohorts in the study were similar. Conclusions: Our models efficiently analyze mfVEPs with <2% false positives compared with human false positives of <8%. Translational Relevance: mfVEP, a safe neurophysiological technique, analyzed using artificial intelligence, can serve as an efficient biomarker in MS clinical trials and signal latency measurement.


Assuntos
Potenciais Evocados Visuais , Esclerose Múltipla , Algoritmos , Inteligência Artificial , Humanos , Esclerose Múltipla/diagnóstico , Campos Visuais
14.
Mult Scler ; 28(5): 697-706, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34378454

RESUMO

BACKGROUND: Expansion of chronic multiple sclerosis (MS) lesion is associated with slow-burning inflammation at lesion rim. However, the underlying mechanisms leading to expansion are not fully understood. OBJECTIVE: To investigate the relationship between diffusivity markers of demyelination and axonal loss in perilesional white matter and lesion expansion in relapsing-remitting MS (RRMS). METHODS: T1, FLAIR and diffusion tensor images were acquired from 30 patients. Novel single-streamline technique was used to estimate diffusivity in lesions, perilesional white matter and normal-appearing white matter (NAWM). RESULTS: Significant association was found between baseline periplaque radial diffusivity (RD) and subsequent lesion expansion. Conversely, periplaque axial diffusivity (AD) did not correlate with lesion growth. Baseline RD (but not AD) in periplaque white matter of expanding lesions was significantly higher compared with non-expanding lesions. Correlation between increase of both RD and AD in the periplaque area during follow-up period and lesion expansion was noticeably stronger for RD. Increase of RD in periplaque area was also much higher compared to AD. There was significant increase of AD and RD in the periplaque area of expanding, but not in non-expanding, lesions. CONCLUSION: Periplaque demyelination is likely to be an initial step in a process of lesion expansion and, as such, potentially represents a suitable target for remyelinating therapies.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Humanos , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
15.
Mult Scler ; 28(5): 757-767, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34379018

RESUMO

BACKGROUND: Decreased motion perception has been suggested as a marker for visual pathway demyelination in optic neuritis (ON) and/or multiple sclerosis (MS). OBJECTIVES: To examine the influence of neuro-axonal damage on motion perception in MS and neuromyelitis optica spectrum disorders (NMOSD). METHODS: We analysed motion perception with numbers-from-motion (NFM), visual acuity, (multifocal (mf)) VEP, optical coherence tomography in patients with MS (n = 38, confirmatory cohort n = 43), NMOSD (n = 13) and healthy controls (n = 33). RESULTS: NFM was lower compared with controls in MS (B = -12.37, p < 0.001) and NMOSD (B = -34.5, p < 0.001). NFM was lower in ON than in non-ON eyes (B = -30.95, p = 0.041) in NMOSD, but not MS. In MS and NMOSD, lower NFM was associated with worse visual acuity (B = -139.4, p < 0.001/B = -77.2, p < 0.001) and low contrast letter acuity (B = 0.99, p = 0.002/B = 1.6, p < 0.001), thinner peripapillary retinal nerve fibre layer (B = 1.0, p < 0.001/ B = 0.92, p = 0.016) and ganglion cell/inner plexiform layer (B = 64.8, p < 0.001/B = 79.5, p = 0.006), but not with VEP P100 latencies. In the confirmatory MS cohort, lower NFM was associated with thinner retinal nerve fibre layer (B = 1.351, p < 0.001) and increased mfVEP P100 latencies (B = -1.159, p < 0.001). CONCLUSIONS: Structural neuro-axonal visual pathway damage is an important driver of motion perception impairment in MS and NMOSD.


Assuntos
Percepção de Movimento , Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Vias Visuais/diagnóstico por imagem
16.
Surv Ophthalmol ; 67(2): 411-426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34146577

RESUMO

There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.


Assuntos
Doenças Neurodegenerativas , Degeneração Retrógrada , Humanos , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/patologia , Células Ganglionares da Retina/patologia , Degeneração Retrógrada/patologia , Sinapses/patologia , Vias Visuais/patologia
17.
Aging Brain ; 2: 100049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908892

RESUMO

To examine the relationships of retinal structural (optical coherence tomography) and visual functional (multifocal visual evoked potentials, mfVEP) indices with neuropsychological and brain structural measurements in healthy older subjects. 95 participants (mean (SD) age 68.1 (9.0)) years were recruited in the Optic Nerve Decline and Cognitive Change (ONDCC) study in this observational clinical investigation. OCT was conducted for retinal nerve fibre layer (RNFL) and mfVEP for amplitude and latency measurements. Participants undertook neuropsychological tests for cognitive performance and MRI for volumetric evaluation of various brain regions. Generalised estimating equation models were used for association analysis (p < 0.05). The brain volumetric measures including total grey matter (GM), cortex, thalamus, hippocampal and fourth ventricular volumes were significantly associated with global and sectoral RNFL. RNFL thickness correlated with delayed recalls of California verbal learning test (CVLT) and Rey complex figure test (RCFT). The mfVEP amplitudes associated with cerebral white matter (WM) and cingulate GM volumes in MRI and CVLT, RCFT and trail making test outcomes. A significant association of mfVEP latency with logical memory delayed recall and thalamus volume was also observed. Our results suggested significant association of specific RNFL and mfVEP measures with distinctive brain region volumes and cognitive tests reflecting performance in memory, visuospatial and executive functional domains. These findings indicate that the mfVEP and RNFL measurements may parallel brain structural and neuropsychological measures in the older population.

18.
J Neurol Neurosurg Psychiatry ; 92(12): 1319-1324, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34187865

RESUMO

OBJECTIVE: To investigate potential neuroprotective and pro-remyelinating effects of alemtuzumab in multiple sclerosis (MS), using the visual pathway as a model. METHODS: We monitored clinical, multifocal visual evoked potential (mfVEP) and MRI outcomes in 30 patients commencing alemtuzumab for relapsing MS, and a reference group of 20 healthy controls (HCs), over 24 months. Change in mfVEP latency was the primary endpoint; change in optic radiation (OR) lesion diffusion metrics and Mars letter contrast sensitivity over the course of the study were secondary endpoints. RESULTS: In patients, we observed a mean shortening of mfVEP latency of 1.21 ms over the course of the study (95% CI 0.21 to 2.21, p=0.013), not altered by correction for age, gender, disease duration or change in OR T2 lesion volume. Mean mfVEP latency in the HC group increased over the course of the study by 0.72 ms (not significant). Analysis of chronic OR T2 lesions (patients) showed an increase in normalised fractional anisotropy and axial diffusivity between baseline and 24 months (both p<0.01). Mean Mars letter contrast sensitivity was improved at 24 months vs baseline (p<0.001), and driven by an early improvement, in both patients and HC. CONCLUSION: We found evidence of partial lesion remyelination after alemtuzumab therapy, indicating either natural restoration in the context of a 'permissive' local milieu; or potentially an independent, pro-reparative mechanism of action. The visual system presents a unique opportunity to study function-structure specific effects of therapy and inform the design of future phase 2 MS remyelination trials.


Assuntos
Alemtuzumab/uso terapêutico , Encéfalo/diagnóstico por imagem , Potenciais Evocados Visuais/fisiologia , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto , Alemtuzumab/farmacologia , Encéfalo/efeitos dos fármacos , Potenciais Evocados Visuais/efeitos dos fármacos , Feminino , Humanos , Fatores Imunológicos/farmacologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Exame Neurológico , Vias Visuais/efeitos dos fármacos , Adulto Jovem
19.
Neurology ; 97(2): 68-79, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33910937

RESUMO

OBJECTIVE: To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS: To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS: A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS: The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly.


Assuntos
Projetos de Pesquisa , Doenças Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica , Consenso , Técnica Delphi , Humanos , Oftalmologia/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-33597189

RESUMO

OBJECTIVE: To investigate the association between disease-modifying therapies (DMTs) and the rate of progressive retinal ganglion cell (RGC) and nerve fiber loss in MS. METHODS: One hundred five relapsing-remitting patients with MS were followed annually for a median of 4.0 years using optical coherence tomography. Twenty-five healthy subjects were also included as normal controls. The rates of global peripapillary retinal nerve fiber layer (pRNFL), temporal RNFL (tRNFL), and ganglion cell inner plexiform layer (GCIPL) thinning were analyzed according to DMT type using a linear mixed-effects model. Optic radiation lesion volume was measured on brain MRI and included as a covariate to minimize the effects of retrograde transsynaptic degeneration. RESULTS: The annual rates of RNFL and GCIPL thinning were higher in patients treated with "platform" therapies (interferon-ß and glatiramer acetate) compared with DMTs of higher clinical efficacy (including fingolimod, dimethyl fumarate, natalizumab, alemtuzumab, rituximab, and ocrelizumab) (difference = -0.22 µm/y, p = 0.02 for pRNFL; difference = -0.34 µm/y, p = 0.009 for tRNFL; and difference = -0.16 µm/y, p = 0.005 for GCIPL). Based on an analysis of individual treatments (interferon-ß, glatiramer acetate, fingolimod, and natalizumab), interferon-ß was associated with inferior RGC preservation, relative to the other drugs. No effect difference was found between glatiramer acetate, fingolimod, and natalizumab. CONCLUSIONS: Progressive loss of RGCs in patients with MS is more pronounced in patients treated with interferon-ß than other DMTs. This finding may have implications for DMT selection in MS. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for patients with MS, treatment with interferon-ß compared with other DMTs leads to a more pronounced rate of retinal ganglion cell loss.


Assuntos
Interferon beta/farmacologia , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Células Ganglionares da Retina/patologia , Adulto , Estudos de Coortes , Progressão da Doença , Feminino , Cloridrato de Fingolimode/farmacologia , Acetato de Glatiramer/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/patologia , Natalizumab/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA