Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 449-457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417296

RESUMO

Self-assembled hyaluronic acid-based nanogels are versatile drug carriers due to their biodegradable nature and gentle preparation conditions, making them particularly interesting for delivery of peptide therapeutics. This study aims to elucidate the relation between peptide structure and encapsulation in a nanogel. Key peptide properties that affect encapsulation in octenyl succinic anhydride-modified hyaluronic acid nanogels were identified as we explored the effect on nanogel characteristics using 12 peptides with varying charge and hydrophobicity. The size and surface properties of the microfluidics-assembled peptide-loaded nanogels were evaluated using dynamic light scattering, laser Doppler electrophoresis, and small angle neutron scattering. Additionally, the change in peptide secondary structure upon encapsulation in nanogels, their release from the nanogels, and the in vitro antimicrobial activity were assessed. In conclusion, the more hydrophobic peptides showed stronger binding to the nanogel carrier and localized internally rather than on the surface of the nanogel, resulting in more spherical nanogels with smoother surfaces and slower release profiles. In contrast, cationic and hydrophilic peptides localized at the nanogel surface resulting in fluffier nanogel structures and quick and more complete release in biorelevant medium. These findings emphasize that the advantages of nanogel delivery systems for different applications depend on the therapeutic peptide properties.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Nanogéis/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Polietilenoglicóis/química , Peptídeos , Polietilenoimina/química
2.
Eur J Pharm Biopharm ; 193: 254-261, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944710

RESUMO

Antimicrobial peptides (AMPs) are promising alternatives to antibiotics for treatment of antimicrobial resistant (AMR) bacterial infections. However, their narrow therapeutic window due to in vivo toxicity and limited stability hampers their clinical use. Here, we evaluated encapsulation of two amphiphilic AMPs, SAAP-148 and snake cathelicidin Ab-Cath, into oleyl-modified hyaluronic acid (OL-HA) nanogels to improve their selectivity index. The AMP-loaded OL-HA nanogels ranged 181-206 nm in size with a PDI of 0.2, highly negative surface charge (-47 to -48 mV) and moderate encapsulation efficiency (53-63%). The AMP-loaded OL-HA nanogels displayed similar activity in vitro as AMP solutions against AMR Staphylococcus aureus and Acinetobacter baumannii, with a dose-dependent effect over time. Importantly, the AMP-loaded OL-HA nanogels showed decreased cytotoxicity towards human erythrocytes and primary skin fibroblast, thereby improving the selectivity index of SAAP-148 and Ab-Cath by 2- and 16.8-fold, respectively. Particularly, the selectivity of Ab-Cath-loaded OL-HA nanogels has great clinical potential, with an index that reached ≥ 300 for S. aureus and ≥ 3000 for A. baumannii. These findings indicate that OL-HA nanogels are a promising drug delivery system to reduce the cytotoxicity of AMPs without substantially affecting their antimicrobial activity, thereby increasing their selectivity index and potential as therapeutics to combat AMR bacterial infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Bacterianas , Humanos , Nanogéis , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ácido Hialurônico , Peptídeos Antimicrobianos , Staphylococcus aureus , Antibacterianos/farmacologia
4.
Pharmaceutics ; 15(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839751

RESUMO

Chronic wound infections colonized by bacteria are becoming more difficult to treat with current antibiotics due to the development of antimicrobial resistance (AMR) as well as biofilm and persister cell formation. Synthetic antibacterial and antibiofilm peptide (SAAP)-148 is an excellent alternative for treatment of such infections but suffers from limitations related to its cationic peptidic nature and thus instability and possible cytotoxicity, resulting in a narrow therapeutic window. Here, we evaluated SAAP-148 encapsulation in nanogels composed of octenyl succinic anhydride (OSA)-modified hyaluronic acid (HA) to circumvent these limitations. SAAP-148 was efficiently (>98%) encapsulated with high drug loading (23%), resulting in monodispersed anionic OSA-HA nanogels with sizes ranging 204-253 nm. Nanogel lyophilization in presence of polyvinyl alcohol maintained their sizes and morphology. SAAP-148 was sustainedly released from lyophilized nanogels (37-41% in 72 h) upon reconstitution. Lyophilized SAAP-148-loaded nanogels showed similar antimicrobial activity as SAAP-148 against planktonic and biofilm-residing AMR Staphylococcus aureus and Acinetobacter baumannii. Importantly, formulated SAAP-148 showed reduced cytotoxicity against human erythrocytes, primary human skin fibroblasts and human keratinocytes. Additionally, lyophilized SAAP-148-loaded nanogels eradicated AMR S. aureus and A. baumannii colonizing a 3D human epidermal model, without inducing any cytotoxicity in contrast to SAAP-148. These findings indicate that OSA-HA nanogels increase SAAP-148's therapeutic potential for treatment of skin wound infections.

5.
Pharmaceutics ; 13(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834254

RESUMO

Bacterial infections constitute a threat to public health as antibiotics are becoming less effective due to the emergence of antimicrobial resistant strains and biofilm and persister formation. Antimicrobial peptides (AMPs) are considered excellent alternatives to antibiotics; however, they suffer from limitations related to their peptidic nature and possible toxicity. The present review critically evaluates the chemical characteristics and antibacterial effects of lipid and polymeric AMP delivery systems and coatings that offer the promise of enhancing the efficacy of AMPs, reducing their limitations and prolonging their half-life. Unfortunately, the antibacterial activities of these systems and coatings have mainly been evaluated in vitro against planktonic bacteria in less biologically relevant conditions, with only some studies focusing on the antibiofilm activities of the formulated AMPs and on the antibacterial effects in animal models. Further improvements of lipid and polymeric AMP delivery systems and coatings may involve the functionalization of these systems to better target the infections and an analysis of the antibacterial activities in biologically relevant environments. Based on the available data we proposed which polymeric AMP delivery system or coatings could be profitable for the treatment of the different hard-to-treat infections, such as bloodstream infections and catheter- or implant-related infections.

6.
ACS Nano ; 14(6): 6693-6706, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32392034

RESUMO

Local as well as systemic therapy is often used to treat bacterial lung infections. Delivery of antibiotics to the vascular side of infected lung tissue using lung-targeting microspheres (MS) is a good alternative to conventional administration routes, allowing for localized high levels of antibiotics. This delivery route can also complement inhaled antibiotic therapy, especially in the case of compromised lung function. We prepared and characterized monodisperse poly(lactic-co-glycolic acid) (PLGA) MS loaded with levofloxacin using a flow-focusing glass microfluidic chip. In vitro characterization showed that the encapsulated LVX displayed a biphasic controlled release during 5 days and preserved its antibacterial activity. The MS degradation was investigated in vitro by cross-sectioning the MS using a focused ion beam scanning electron microscope and in vivo by histological examination of lung tissue from mice intravenously administered with the MS. The MS showed changes in the surface morphology and internal matrix, whereas the degradation in vivo was 3 times faster than that in vitro. No effect on the viability of endothelial and lung epithelial cells or hemolytic activity was observed. To evaluate the pharmacokinetics and biodistribution of the MS, complete quantitative imaging of the 111indium-labeled PLGA MS was performed in vivo with single-photon emission computed tomography imaging over 10 days. The PLGA MS distributed homogeneously in the lung capillaries. Overall, intravenous administration of 12 µm PLGA MS is suitable for passive lung targeting and pulmonary therapy.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Administração Intravenosa , Animais , Pulmão , Camundongos , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Distribuição Tecidual
7.
J Colloid Interface Sci ; 555: 595-606, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31404843

RESUMO

HYPOTHESIS: The widespread resistance of bacteria to traditional antibiotic treatments has expedited the search for novel therapies against these pathogens. The hypothesis of this work is that two distinctively different polymeric delivery systems, specifically D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles and octenyl succinic anhydride-modified low molecular weight hyaluronic acid (OSA-HA) nanogels may be used to substantially improve the properties of azithromycin, allowing its use for effective treatment of Pseudomonas aeruginosa biofilm infections. EXPERIMENTS: Azithromycin was encapsulated in both delivery systems and the physicochemical properties of the loaded delivery systems, including size, surface charge and drug loading were evaluated. Additionally, particle interaction with a mucin layer, penetration into a bacterial biofilm, prevention of biofilm formation and eradication of pre-formed biofilms, the influence on production of virulence factors and bacterial motility as well as cytotoxicity towards hepatocytes and lung epithelial cells were compared head-to-head. FINDINGS: The TPGS-PLGA nanoparticles noticeably improved the antimicrobial activity and the biofilm prevention activity of azithromycin whereas the OSA-HA nanogels showed reduced mucin interactions together with improved reduction of pre-formed biofilms and maintained the low eukaryotic cell cytotoxicity of azithromycin.


Assuntos
Azitromicina/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Azitromicina/química , Ácido Hialurônico/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície
8.
Nanomedicine ; 20: 102022, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170510

RESUMO

Anti-biofilm peptides are a subset of antimicrobial peptides and represent promising broad-spectrum agents for the treatment of bacterial biofilms, though some display host toxicity in vivo. Here we evaluated nanogels composed of modified hyaluronic acid for the encapsulation of the anti-biofilm peptide DJK-5 in vivo. Nanogels of 174 to 194 nm encapsulating 33-60% of peptide were created. Efficacy and toxicity of the nanogels were tested in vivo employing a murine abscess model of a Pseudomonas aeruginosa LESB58 high bacterial density infection. The dose of DJK-5 that could be administered intravenously to mice without inducing toxicity was more than doubled after encapsulation in nanogels. Upon subcutaneous administration, the toxicity of the DJK-5 in nanogels was decreased four-fold compared to non-formulated peptide, without compromising the anti-abscess effect of DJK-5. These findings support the use of nanogels to increase the safety of antimicrobial and anti-biofilm peptides after intravenous and subcutaneous administration.


Assuntos
Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Nanogéis/química , Oligopeptídeos/farmacologia , Abscesso/patologia , Animais , Materiais Biocompatíveis/química , Ácido Hialurônico/química , Camundongos , Nanogéis/ultraestrutura , Oligopeptídeos/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA