Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 498-507, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204816

RESUMO

Reverse gyrase is the only topoisomerase that introduces positive supercoils into DNA in an ATP-dependent reaction. Positive DNA supercoiling becomes possible through the functional cooperation of the N-terminal helicase domain of reverse gyrase with its C-terminal type IA topoisomerase domain. This cooperation is mediated by a reverse-gyrase-specific insertion into the helicase domain termed the `latch'. The latch consists of a globular domain inserted at the top of a ß-bulge loop that connects this globular part to the helicase domain. While the globular domain shows little conservation in sequence and length and is dispensable for DNA supercoiling, the ß-bulge loop is required for supercoiling activity. It has previously been shown that the ß-bulge loop constitutes a minimal latch that couples ATP-dependent processes in the helicase domain to DNA processing by the topoisomerase domain. Here, the crystal structure of Thermotoga maritima reverse gyrase with such a ß-bulge loop as a minimal latch is reported. It is shown that the ß-bulge loop supports ATP-dependent DNA supercoiling of reverse gyrase without engaging in specific interactions with the topoisomerase domain. When only a small latch or no latch is present, a helix in the nearby helicase domain of T. maritima reverse gyrase partially unfolds. Comparison of the sequences and predicted structures of latch regions in other reverse gyrases shows that neither sequence nor structure are decisive factors for latch functionality; instead, the decisive factors are likely to be electrostatics and plain steric bulk.


Assuntos
DNA Helicases , DNA Topoisomerases Tipo I , Estrutura Terciária de Proteína , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Helicases/química , DNA , Trifosfato de Adenosina
2.
Methods Enzymol ; 673: 251-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965010

RESUMO

RNA helicases are a diverse group of enzymes that catalyze the unwinding of RNA duplex regions in an ATP-dependent reaction. Both the helicase itself and its RNA substrate undergo conformational changes during the reaction, which are amenable to Förster resonance energy transfer (FRET) studies. Single-molecule FRET studies in solution by confocal microscopy and on surfaces by total internal reflection microscopy provide information on different conformers present, their fractional populations in equilibrium, and the rate constants of their inter-conversion. Collectively, the information gained can be integrated into a kinetic and thermodynamic framework that quantitatively describes the conformational dynamics of the helicase studied. FRET experiments also provide distance information to map and model the structures of individual conformational states. The integrated model provides a comprehensive description of the structure and dynamics of the helicase, which can be linked to its biological function. Single-molecule FRET studies have tremendous potential to define the relationship between structure, function and dynamics of RNA helicases and to understand the mechanistic basis for their broad range of biological functions. The focus of this chapter is on providing guidance in the design of single-molecule FRET experiments and on the interpretation of the data obtained. Selected examples illustrate important considerations when analyzing single-molecule experiments, as well as their limitations and possible pitfalls.


Assuntos
Transferência Ressonante de Energia de Fluorescência , RNA Helicases , DNA Helicases/metabolismo , Conformação Molecular , RNA/química
3.
Nucleic Acids Res ; 50(11): 6497-6510, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35689631

RESUMO

Translation initiation in eukaryotes starts with the recognition of the mRNA 5'-cap by eIF4F, a hetero-trimeric complex of eIF4E, the cap-binding protein, eIF4A, a DEAD-box helicase, and eIF4G, a scaffold protein. eIF4G comprises eIF4E- and eIF4A-binding domains (4E-BD, 4A-BD) and three RNA-binding regions (RNA1-RNA3), and interacts with eIF4A, eIF4E, and with the mRNA. Within the eIF4F complex, the helicase activity of eIF4A is increased. We showed previously that RNA3 of eIF4G is important for the stimulation of the eIF4A conformational cycle and its ATPase and helicase activities. Here, we dissect the interplay between the eIF4G domains and the role of the eIF4E/cap interaction in eIF4A activation. We show that RNA2 leads to an increase in the fraction of eIF4A in the closed state, an increased RNA affinity, and faster RNA unwinding. This stimulatory effect is partially reduced when the 4E-BD is present. eIF4E binding to the 4E-BD then further inhibits the helicase activity and closing of eIF4A, but does not affect the RNA-stimulated ATPase activity of eIF4A. The 5'-cap renders the functional interaction of mRNA with eIF4A less efficient. Overall, the activity of eIF4A at the 5'-cap is thus fine-tuned by a delicately balanced network of stimulatory and inhibitory interactions.


Assuntos
Fator de Iniciação Eucariótico 4G , Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Methods ; 204: 428-441, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35304246

RESUMO

RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia , RNA Helicases DEAD-box/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , RNA/metabolismo , Imagem Individual de Molécula/métodos
5.
Mol Pharm ; 18(9): 3532-3543, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34323492

RESUMO

Conjugation of antibiotics with polymers is an emerging strategy to improve the performance of these important drugs. Here, the antibiotic ciprofloxacin (CIP) was conjugated with amphiphilic poly(2-oxazoline) (POx) block copolymers to investigate whether the activity of the antibiotic was enhanced due to additionally induced membrane activity. The resulting polymer-antibiotic conjugates (PACs) are an order of magnitude more active against the bacterial strain Staphylococcus aureus than CIP and show high activities against numerous pathogenic bacterial strains. Their high activity depends on an optimal hydrophobic/hydrophilic balance (HHB) of the POx tail. Mechanistic studies revealed that the derivatization of CIP required for the polymer conjugation lowers the affinity of the antibiotic to its target topoisomerase IV. However, the amphiphilic PACs are most likely concentrated within the bacterial cytoplasm, which overcompensates the loss of affinity and results in high antibacterial activity. In addition, the development of resistance in S. aureus and Escherichia coli is slowed down. More importantly, the amphiphilic PACs are active against CIP-resistant S. aureus and E. coli. The PACs with the highest activity are not cytotoxic toward human stem cells and do not lyse blood cells in saturated solution.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Oxazóis/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Células Cultivadas , Ciprofloxacina/química , Composição de Medicamentos/métodos , Farmacorresistência Bacteriana , Excipientes/química , Humanos , Células-Tronco Mesenquimais , Testes de Sensibilidade Microbiana
6.
Nucleic Acids Res ; 49(11): 6027-6042, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33905522

RESUMO

Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.


Assuntos
DNA Girase/química , DNA Topoisomerase IV/química , Bactérias/enzimologia , DNA/química , DNA/metabolismo , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/química , Evolução Molecular , Conformação Proteica , Domínios Proteicos
8.
Molecules ; 26(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669078

RESUMO

Gyrase is a bacterial type IIA topoisomerase that catalyzes negative supercoiling of DNA. The enzyme is essential in bacteria and is a validated drug target in the treatment of bacterial infections. Inhibition of gyrase activity is achieved by competitive inhibitors that interfere with ATP- or DNA-binding, or by gyrase poisons that stabilize cleavage complexes of gyrase covalently bound to the DNA, leading to double-strand breaks and cell death. Many of the current inhibitors suffer from severe side effects, while others rapidly lose their antibiotic activity due to resistance mutations, generating an unmet medical need for novel, improved gyrase inhibitors. DNA supercoiling by gyrase is associated with a series of nucleotide- and DNA-induced conformational changes, yet the full potential of interfering with these conformational changes as a strategy to identify novel, improved gyrase inhibitors has not been explored so far. This review highlights recent insights into the mechanism of DNA supercoiling by gyrase and illustrates the implications for the identification and development of conformation-sensitive and allosteric inhibitors.


Assuntos
DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Bactérias/enzimologia , Modelos Moleculares , Inibidores da Topoisomerase II/química
9.
Biol Chem ; 402(5): 529-559, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33583161

RESUMO

RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for non-sequence-specific interaction with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.


Assuntos
RNA Helicases/metabolismo , Humanos , RNA Helicases/química
10.
Methods Mol Biol ; 2209: 119-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201466

RESUMO

Förster resonance energy transfer (FRET) is a versatile tool to study the conformational dynamics of proteins. Here, we describe the use of confocal and total internal reflection fluorescence (TIRF) microscopy to follow the conformational cycling of DEAD-box helicases on the single molecule level, using the eukaryotic translation initiation factor eIF4A as an illustrative example. Confocal microscopy enables the study of donor-acceptor-labeled molecules in solution, revealing the population of different conformational states present. With TIRF microscopy, surface-immobilized molecules can be imaged as a function of time, revealing sequences of conformational states and the kinetics of conformational changes.


Assuntos
RNA Helicases DEAD-box/química , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Cinética , Conformação Proteica
11.
RNA ; 26(11): 1557-1574, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32669294

RESUMO

RNA helicases catalyze the ATP-dependent destabilization of RNA duplexes. DEAD-box helicases share a helicase core that mediates ATP binding and hydrolysis, RNA binding and unwinding. Most members of this family contain domains flanking the core that can confer RNA substrate specificity and guide the helicase to a specific RNA. However, the in vivo RNA substrates of most helicases are currently not defined. The DEAD-box helicase Hera from Thermus thermophilus contains a helicase core, followed by a dimerization domain and an RNA binding domain that folds into an RNA recognition motif (RRM). The RRM mediates high affinity binding to an RNA hairpin, and an adjacent duplex is then unwound by the helicase core. Hera is a cold-shock protein, and has been suggested to act as an RNA chaperone under cold-shock conditions. Using crosslinking immunoprecipitation of Hera/RNA complexes and sequencing, we show that Hera binds to a large fraction of T. thermophilus RNAs under normal-growth and cold-shock conditions without a strong sequence preference, in agreement with a structure-specific recognition of RNAs and a general function in RNA metabolism. Under cold-shock conditions, Hera is recruited to RNAs with high propensities to form stable secondary structures. We show that selected RNAs identified, including a set of tRNAs, bind to Hera in vitro, and activate the Hera helicase core. Gene ontology analysis reveals an enrichment of genes related to translation, including mRNAs of ribosomal proteins, tRNAs, tRNA ligases, and tRNA-modifying enzymes, consistent with a key role of Hera in ribosome and tRNA metabolism.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Thermus thermophilus/crescimento & desenvolvimento , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Resposta ao Choque Frio , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
12.
J Mol Biol ; 432(16): 4762-4771, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32592697

RESUMO

Reverse gyrase is a unique type I topoisomerase that catalyzes the introduction of positive supercoils into DNA in an ATP-dependent reaction. Supercoiling is the result of a functional cooperation of the N-terminal helicase domain with the C-terminal topoisomerase domain. The helicase domain is a nucleotide-dependent conformational switch that alternates between open and closed states with different affinities for single- and double-stranded DNA. The isolated helicase domain as well as full-length reverse gyrase can transiently unwind double-stranded regions in an ATP-dependent reaction. The latch region of reverse gyrase, an insertion into the helicase domain with little conservation in sequence and length, has been proposed to coordinate events in the helicase domain with strand passage by the topoisomerase domain. Latch deletions lead to a reduction in or complete loss of supercoiling activity. Here we show that the latch consists of two functional parts, a globular domain that is dispensable for DNA supercoiling and a ß-hairpin that connects the globular domain to the helicase domain and is required for supercoiling activity. The ß-hairpin thus constitutes a minimal latch that couples ATP-dependent processes in the helicase domain to DNA processing by the topoisomerase domain.


Assuntos
DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/metabolismo , Thermotoga maritima/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Topoisomerases Tipo I/genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Deleção de Sequência , Thermotoga maritima/química , Thermotoga maritima/genética
13.
Biochem J ; 477(7): 1203-1218, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32167135

RESUMO

Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer-monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer-monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations.


Assuntos
Proteínas de Bactérias/metabolismo , Chlorobi/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Domínios Proteicos , Anticorpos de Domínio Único/metabolismo , Proteínas ras/química , Regulação Alostérica , Animais , Camelídeos Americanos , Desenho de Fármacos , Escherichia coli/metabolismo , Hidrólise , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Multimerização Proteica
14.
J Biol Chem ; 295(8): 2299-2312, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31953321

RESUMO

DNA gyrase is a bacterial DNA topoisomerase that catalyzes ATP-dependent negative DNA supercoiling and DNA decatenation. The enzyme is a heterotetramer comprising two GyrA and two GyrB subunits. Its overall architecture is conserved, but species-specific elements in the two subunits are thought to optimize subunit interaction and enzyme function. Toward understanding the roles of these different elements, we compared the activities of Bacillus subtilis, Escherichia coli, and Mycobacterium tuberculosis gyrases and of heterologous enzymes reconstituted from subunits of two different species. We show that B. subtilis and E. coli gyrases are proficient DNA-stimulated ATPases and efficiently supercoil and decatenate DNA. In contrast, M. tuberculosis gyrase hydrolyzes ATP only slowly and is a poor supercoiling enzyme and decatenase. The heterologous enzymes are generally less active than their homologous counterparts. The only exception is a gyrase reconstituted from mycobacterial GyrA and B. subtilis GyrB, which exceeds the activity of M. tuberculosis gyrase and reaches the activity of the B. subtilis gyrase, indicating that the activities of enzymes containing mycobacterial GyrB are limited by ATP hydrolysis. The activity pattern of heterologous gyrases is in agreement with structural features present: B. subtilis gyrase is a minimal enzyme, and its subunits can functionally interact with subunits from other bacteria. In contrast, the specific insertions in E. coli and mycobacterial gyrase subunits appear to prevent efficient functional interactions with heterologous subunits. Understanding the molecular details of gyrase adaptations to the specific physiological requirements of the respective organism might aid in the development of species-specific gyrase inhibitors.


Assuntos
Bactérias/enzimologia , DNA Girase/metabolismo , Subunidades Proteicas/metabolismo , Adenosina Trifosfatases/metabolismo , DNA Bacteriano , DNA Super-Helicoidal , Cinética , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Especificidade da Espécie , Homologia Estrutural de Proteína
15.
Nucleic Acids Res ; 47(10): 5260-5275, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30997503

RESUMO

Eukaryotic translation initiation requires unwinding of secondary structures in the 5'-untranslated region of mRNA. The DEAD-box helicase eIF4A is thought to unwind structural elements in the 5'-UTR in conjunction with eIF4G and eIF4B. Both factors jointly stimulate eIF4A activities by modulation of eIF4A conformational cycling between open and closed states. Here we examine how RNA substrates modulate eIF4A activities. The RNAs fall into two classes: Short RNAs only partially stimulate the eIF4A ATPase activity, and closing is rate-limiting for the conformational cycle. By contrast, longer RNAs maximally stimulate ATP hydrolysis and promote closing of eIF4A. Strikingly, the rate constants of unwinding do not correlate with the length of a single-stranded region preceding a duplex, but reach a maximum for RNA with a single-stranded region of six nucleotides. We propose a model in which RNA substrates affect eIF4A activities by modulating the kinetic partitioning of eIF4A between futile, unproductive, and productive cycles.


Assuntos
Regiões 5' não Traduzidas , Adenosina Trifosfatases/química , Fator de Iniciação 4F em Eucariotos/química , RNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Clonagem Molecular , Fator de Iniciação 4F em Eucariotos/genética , Hidrólise , Cinética , Nucleotídeos/genética , Domínios Proteicos , RNA/genética , RNA Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Nucleic Acids Res ; 46(13): 6773-6784, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29893908

RESUMO

The topological state of DNA in vivo is regulated by topoisomerases. Gyrase is a bacterial topoisomerase that introduces negative supercoils into DNA at the expense of ATP hydrolysis. According to the strand-passage mechanism, a double-strand of the DNA substrate is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. The correct orientation of these DNA segments for strand passage is achieved by wrapping of the DNA around gyrase, which involves the C-terminal domains (CTDs) of both GyrA subunits in the A2B2 heterotetramer. Gyrase lacking both CTDs cannot introduce negative supercoils into DNA. Here, we analyze the requirements for the two CTDs in individual steps in the supercoiling reaction. Gyrase that contains a single CTD binds, distorts, and cleaves DNA similarly to wildtype gyrase. It also shows wildtype-like DNA-dependent ATPase activity, and undergoes DNA-induced movement of the CTD as well as N-gate narrowing. Most importantly, the enzyme still introduces negative supercoils into DNA in an ATP-dependent reaction, with a velocity similar to wildtype gyrase, and decreases the linking number of the DNA in steps of two. One CTD is thus sufficient to support DNA supercoiling.


Assuntos
DNA Girase/química , DNA Girase/metabolismo , DNA Super-Helicoidal/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Biocatálise , Clivagem do DNA , DNA Super-Helicoidal/química , Domínios Proteicos
17.
Int J Mol Sci ; 19(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772727

RESUMO

Gyrase is a type IIA topoisomerase that catalyzes negative supercoiling of DNA. The enzyme consists of two GyrA and two GyrB subunits. It is believed to introduce negative supercoils into DNA by converting a positive DNA node into a negative node through strand passage: First, it cleaves both DNA strands of a double-stranded DNA, termed the G-segment, and then it passes a second segment of the same DNA molecule, termed the T-segment, through the gap created. As a two-fold symmetric enzyme, gyrase contains two copies of all elements that are key for the supercoiling reaction: The GyrB subunits provide two active sites for ATP binding and hydrolysis. The GyrA subunits contain two C-terminal domains (CTDs) for DNA binding and wrapping to stabilize the positive DNA node, and two catalytic tyrosines for DNA cleavage. While the presence of two catalytic tyrosines has been ascribed to the necessity of cleaving both strands of the G-segment to enable strand passage, the role of the two ATP hydrolysis events and of the two CTDs has been less clear. This review summarizes recent results on the role of these duplicate elements for individual steps of the supercoiling reaction, and discusses the implications for the mechanism of DNA supercoiling.


Assuntos
DNA Girase/metabolismo , DNA/genética , DNA/metabolismo , Conformação de Ácido Nucleico , Animais , DNA/química , DNA Girase/química , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Humanos , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
18.
J Mol Biol ; 429(23): 3717-3729, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29032205

RESUMO

Topoisomerases catalyze the relaxation, supercoiling, catenation, and decatenation of DNA. Gyrase is a bacterial topoisomerase that introduces negative supercoils into DNA in an ATP-dependent reaction. The enzyme consists of two GyrB subunits, containing the ATPase domains, and two GyrA subunits. Nucleotide binding to gyrase B GyrB causes closing of the N-gate in gyrase, which orients bound DNA for supercoiling. N-gate re-opening after ATP hydrolysis, at the end of the supercoiling reaction, resets the enzyme for subsequent catalytic cycles. Gyrase binds and hydrolyzes two ATP molecules per catalytic cycle. Here, we dissect the role of these two binding and hydrolysis events using gyrase with one ATP-binding- and hydrolysis-deficient subunit, or with one binding-competent, but hydrolysis-deficient ATPase domain. We show that binding of a single ATP molecule induces N-gate closure. Gyrase that can only bind and hydrolyze a single ATP undergoes opening and closing of the N-gate in synchrony with ATP hydrolysis, and promotes DNA supercoiling under catalytic conditions. In contrast, gyrase that can bind two ATP molecules, but hydrolyzes only one, only supercoils DNA under stoichiometric conditions. Here, ATP bound to the hydrolysis-deficient subunit keeps the N-gate closed after hydrolysis of the other ATP and prevents further turnovers. Gyrase with only one functional ATPase domain hydrolyzes ATP with a similar rate to wild-type, but its supercoiling efficiency is reduced. Binding and hydrolysis of the second ATP may thus ensure efficient coupling of the nucleotide cycle with the supercoiling reaction by stabilizing the closed N-gate and by acting as a timer for N-gate re-opening.


Assuntos
Bacillus subtilis/enzimologia , DNA Girase/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Conformação de Ácido Nucleico , Trifosfato de Adenosina/metabolismo , Catálise , DNA Girase/química , DNA Bacteriano/química , DNA Super-Helicoidal/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Nucleic Acids Res ; 45(4): 1994-2006, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28115633

RESUMO

DEAD-box proteins share a structurally similar core of two RecA-like domains (RecA_N and RecA_C) that contain the conserved motifs for ATP-dependent RNA unwinding. In many DEAD-box proteins the helicase core is flanked by ancillary domains. To understand the regulation of the DEAD-box helicase YxiN by its C-terminal RNA recognition motif (RRM), we investigated the effect of RNA binding to the RRM on its position relative to the core, and on core activities. RRM/RNA complex formation substantially shifts the RRM from a position close to the RecA_C to the proximity of RecA_N, independent of RNA contacts with the core. RNA binding to the RRM is communicated to the core, and stimulates ATP hydrolysis and RNA unwinding. The conformational space of the core depends on the identity of the RRM-bound RNA. Allosteric regulation of core activities by RNA-induced movement of ancillary domains may constitute a general regulatory mechanism of DEAD-box protein activity.


Assuntos
Sítios de Ligação , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Motivo de Reconhecimento de RNA , RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Hidrólise , Cadeias de Markov , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , RNA/química , RNA/genética
20.
RNA Biol ; 14(1): 113-123, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858515

RESUMO

Eukaryotic translation initiation starts with binding of the eIF4F complex to the 5'-m7G cap of the mRNA. Recruitment of the 43S pre-initiation complex (PIC), formed by the 40S ribosomal subunit and other translation initiation factors, leads to formation of the 48S PIC that then scans the 5'-untranslated region (5'-UTR) toward the start codon. The eIF4F complex consists of eIF4E, the cap binding protein, eIF4A, a DEAD-box RNA helicase that is believed to unwind secondary structures in the 5'-UTR during scanning, and eIF4G, a scaffold protein that binds to both eIF4E and eIF4A. The ATPase and helicase activities of eIF4A are jointly stimulated by eIF4G and the translation initiation factor eIF4B. Yeast eIF4B mediates recruitment of the 43S PIC to the cap-bound eIF4F complex by interacting with the 40S subunit and possibly with eIF4A. However, a direct interaction between yeast eIF4A and eIF4B has not been demonstrated yet. Here we show that eIF4B binds to eIF4A in the presence of RNA and ADPNP, independent of the presence of eIF4G. A stretch of seven moderately conserved repeats, the r1-7 region, is responsible for complex formation, for modulation of the conformational energy landscape of eIF4A by eIF4B, and for stimulating the RNA-dependent ATPase- and ATP-dependent RNA unwinding activities of eIF4A. The isolated r1-7 region only slightly stimulates eIF4A conformational changes and activities, suggesting that communication of the repeats with other regions of eIF4B is required for full stimulation of eIF4A activity, for recruitment of the PIC to the mRNA and for translation initiation.


Assuntos
Adenosina Trifosfatases/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Regiões 5' não Traduzidas , Sítios de Ligação , Ativação Enzimática , Fator de Iniciação 4A em Eucariotos/química , Fatores de Iniciação em Eucariotos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/metabolismo , RNA Mensageiro/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA