Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome ; 49(4): 306-19, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16699550

RESUMO

In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank. Statistical analysis of a subset of these ESTs identified genes likely differentially expressed in stems, cotyledons, and drought-stressed tissues. Annotation of the differentially expressed cDNAs tentatively identified genes involved in lignin metabolism, starch biosynthesis and stress response, consistent with pathways likely to be active in the tissues under investigation. Simple sequence repeats (SSRs) were identified among these ESTs, and an inexpensive method was developed to screen genomic DNA for the presence of these SSRs. At least 69 SSRs potentially useful in mapping were identified. Selected amplified SSRs were isolated and sequenced. The sequences corresponded to the EST containing the SSRs, confirming that these SSRs will potentially map the gene represented by the EST. The ESTs containing SSRs were annotated to help identify the genes that may be mapped using these markers.


Assuntos
Etiquetas de Sequências Expressas/química , Marcadores Genéticos , Gossypium/genética , Repetições Minissatélites/genética , Estruturas Vegetais/genética , Mapeamento Cromossômico/métodos , Sequência Consenso/genética , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Genes de Plantas , Ligação Genética , Estruturas Vegetais/microbiologia , Polimorfismo Genético , Xanthomonas campestris/patogenicidade
2.
Genome Res ; 16(3): 441-50, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478941

RESUMO

Approximately 185,000 Gossypium EST sequences comprising >94,800,000 nucleotides were amassed from 30 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including drought stress and pathogen challenges. These libraries were derived from allopolyploid cotton (Gossypium hirsutum; A(T) and D(T) genomes) as well as its two diploid progenitors, Gossypium arboreum (A genome) and Gossypium raimondii (D genome). ESTs were assembled using the Program for Assembling and Viewing ESTs (PAVE), resulting in 22,030 contigs and 29,077 singletons (51,107 unigenes). Further comparisons among the singletons and contigs led to recognition of 33,665 exemplar sequences that represent a nonredundant set of putative Gossypium genes containing partial or full-length coding regions and usually one or two UTRs. The assembly, along with their UniProt BLASTX hits, GO annotation, and Pfam analysis results, are freely accessible as a public resource for cotton genomics. Because ESTs from diploid and allotetraploid Gossypium were combined in a single assembly, we were in many cases able to bioinformatically distinguish duplicated genes in allotetraploid cotton and assign them to either the A or D genome. The assembly and associated information provide a framework for future investigation of cotton functional and evolutionary genomics.


Assuntos
Etiquetas de Sequências Expressas , Gossypium/genética , DNA Complementar/genética , Diploide , Perfilação da Expressão Gênica/métodos , Genoma de Planta , Dados de Sequência Molecular , Poliploidia , Análise de Sequência de DNA
3.
Plant Mol Biol ; 48(5-6): 667-81, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11999842

RESUMO

Heat stress is common in most cereal-growing areas of the world. In this paper, we summarize the current knowledge on the molecular and genetic basis of thermotolerance in vegetative and reproductive tissues of cereals. Significance of heat stress response and expression of heat shock proteins (HSPs) in thermotolerance of cereal yield and quality is discussed. Major avenues for increasing thermotolerance in cereals via conventional breeding or genetic modification are outlined.


Assuntos
Adaptação Fisiológica/genética , Grão Comestível/genética , Proteínas de Choque Térmico/genética , Temperatura Alta , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA