Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(7): 075702, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857559

RESUMO

We use computationally simple neutral pseudoatom ("average atom") density functional theory (DFT) and standard DFT to elucidate liquid-liquid phase transitions (LPTs) in liquid silicon. An ionization-driven transition and three LPTs including the known LPT near 2.5 g/cm^{3} are found. They are robust even to 1 eV. The pair distributions functions, pair potentials, electrical conductivities, and compressibilites are reported. The LPTs are elucidated within a Fermi liquid picture of electron scattering at the Fermi energy that complements the transient covalent bonding picture.

2.
Nature ; 569(7757): 542-545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118522

RESUMO

Amorphous water ice comes in at least three distinct structural forms, all lacking long-range crystalline order. High-density amorphous ice (HDA) was first produced by compressing ice I to 11 kilobar at temperatures below 130 kelvin, and the process was described as thermodynamic melting1, implying that HDA is a glassy state of water. This concept, and the ability to transform HDA reversibly into low-density amorphous ice, inspired the two-liquid water model, which relates the amorphous phases to two liquid waters in the deeply supercooled regime (below 228 kelvin) to explain many of the anomalies of water2 (such as density and heat capacity anomalies). However, HDA formation has also been ascribed3 to a mechanical instability causing structural collapse and associated with kinetics too sluggish for recrystallization to occur. This interpretation is supported by simulations3, analogy with a structurally similar system4, and the observation of lattice-vibration softening as ice is compressed5,6. It also agrees with recent observations of ice compression at higher temperatures-in the 'no man's land' regime, between 145 and 200 kelvin, where kinetics are faster-resulting in crystalline phases7,8. Here we further probe the role of kinetics and show that, if carried out slowly, compression of ice I even at 100 kelvin (a region in which HDA typically forms) gives proton-ordered, but non-interpenetrating, ice IX', then proton-ordered and interpenetrating ice XV', and finally ice VIII'. By contrast, fast compression yields HDA but no ice IX, and direct transformation of ice I to ice XV' is structurally inhibited. These observations suggest that HDA formation is a consequence of a kinetically arrested transformation between low-density ice I and high-density ice XV' and challenge theories that connect amorphous ice to supercooled liquid water.

3.
J Chem Phys ; 144(12): 124507, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036461

RESUMO

First principles calculations identified a phase transition in aluminium triiodide (AlI3) and predicted its physical and spectroscopic properties under high pressure conditions. A high pressure monoclinic phase is predicted to exist above 1.3 GPa accompanied with a coordination change of aluminium resulting from a transformation from the ambient pressure 4-coordinated primitive monoclinic phase with space group P21/c to the monoclinic 6-coordinated structure with space group C2/m. Density functional phonon calculations predicted its dynamical and mechanical stability. Infrared effective charge intensities and Raman scattering tensors were obtained to characterize its spectroscopic properties. First-principles metadynamics simulations were employed to reconstruct this phase transition and provide the mechanism details for energetically favourable path from the ambient pressure P21/c structure to the predicted C2/m structure.

4.
Phys Rev Lett ; 111(17): 175502, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206503

RESUMO

The phase diagram and equation of state of dense nitrogen are of interest in understanding the fundamental physics and chemistry under extreme conditions, including planetary processes, and in discovering new materials. We predict several stable phases of nitrogen at multi-TPa pressures, including a P4/nbm structure consisting of partially charged N(2)(δ+) pairs and N(5)(δ-) tetrahedra, which is stable in the range 2.5-6.8 TPa. This is followed by a modulated layered structure between 6.8 and 12.6 TPa, which also exhibits a significant charge transfer. The P4/nbm metallic nitrogen salt and the modulated structure are stable at high pressures and temperatures, and they exhibit strongly ionic features and charge density distortions, which is unexpected in an element under such extreme conditions and could represent a new class of nitrogen materials. The P-T phase diagram of nitrogen at TPa pressures is investigated using quasiharmonic phonon calculations and ab initio molecular dynamics simulations.

5.
J Chem Phys ; 138(9): 094501, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23485307

RESUMO

High-pressure phase transitions in Al2Br6 were theoretically investigated using first principles density functional methods. A structural transformation from the initial molecular solid phase to a planar polymeric phase is predicted near 0.4 GPa that is accompanied with a substantial volume drop. A unique feature of this phase transition is that the hcp lattice of Br atoms remains unchanged during the transition, whereas the Al atoms are displaced from the original tetrahedral sites to the octahedral sites. The calculated phonon spectra indicate that the predicted phase is mechanically stable at 1 atm, and therefore it may be quench-recovered to ambient conditions and exist as a metastable form. A second structural transformation is predicted to occur at around 80 GPa, and also at this point, the AlBr3 reaches a metallic state. The electronic structure of the metallic phase features soft phonon modes and Fermi surface nesting in the Brillouin zone, which leads to localized electron-phonon coupling. By comparing with the experimental data available for high-pressure BI3, the superconducting critical temperature Tc for the metallic phase of AlBr3 is estimated to be at 0.5 K or above.

7.
J Phys Condens Matter ; 24(26): 265401, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22692144

RESUMO

The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.

8.
Phys Chem Chem Phys ; 14(23): 8255-63, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22584826

RESUMO

We offer our viewpoint on the nature of amorphous ices produced by pressurization of crystalline ice Ih and the inter-relationship between them from an atomistic perspective. We argue that the transformation of high density amorphous (HDA) ice from crystalline ice is due to a mechanical process arising from the instability of the ice Ih structure. The densification of HDA upon thermal annealing under pressure is a relaxation process. The conversion of the densified amorphous ice to a lower density form (LDA) upon the release of pressure can be attributed to a similar process. It is speculated that amorphous ices are metastable frustrated structures due to the large activation barriers associated with proton reorientation in the formation of the underlying stable crystalline ice polymorphs.

9.
Phys Chem Chem Phys ; 14(19): 7005-11, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22491482

RESUMO

A combined experimental and theoretical study of hydrogen-rich ammonium borohydride (NH4BH4) subjected to pressures up to 10 GPa indicates two phase transitions, detected by synchrotron radiation powder X-ray diffraction, Raman spectroscopy and Car-Parrinello molecular dynamics calculations, at 1.5 and 3.4 GPa. The ambient pressure, face-centred cubic phase of NH4BH4 transforms into a highly disordered intermediate structure which then evolves upon increasing pressure into an orthorhombic, distorted CsCl structure. The structure of the latter phase was solved using ab initio computational techniques and from a Rietveld full pattern refinement of the powder X-ray diffraction data.

10.
Phys Rev Lett ; 108(4): 045503, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400862

RESUMO

Computational searches for structures of solid oxygen under high pressures in the multi-TPa range are carried out using density-functional-theory methods. We find that molecular oxygen persists to about 1.9 TPa at which it transforms into a semiconducting square-spiral-like polymeric structure (I4(1)/acd) with a band gap of ~3.0 eV. Solid oxygen forms a metallic zigzag chainlike structure (Cmcm) at about 3.0 TPa, but the chains in each layer gradually merge as the pressure is increased and a structure of Fmmm symmetry forms at about 9.3 TPa in which each atom has four nearest neighbors. The superconducting properties of molecular oxygen do not vary much with compression, although the structure becomes more symmetric. The electronic properties of oxygen have a complex evolution with pressure, swapping between insulating, semiconducting, and metallic.

11.
Inorg Chem ; 50(20): 10472-5, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21936495

RESUMO

Boron(III) halides (BX(3), where X = F, Cl, Br, I) at ambient pressure conditions exist as strictly monomeric, trigonal-planar molecules. Using correlated ab initio calculations, the three heavier halides (X = Cl, Br, I) are shown to possess B(2)X(4)(µ-X)(2) local minima, isostructural with the diborane molecule. The calculated dissociation barrier of the B(2)I(4)(µ-I)(2) species [≈14 kJ/mol with CCSD(T)/cc-pVTZ] may be high enough to allow cryogenic isolation. The remaining dimer structures are more labile, with dissociation barriers of less than 6 kJ/mol. All three dimer species may be stabilized by application of external pressure. Periodic density functional theory calculations predict a new dimer-based P1 solid, which becomes more stable than the P6(3)/m monomer-derived solids at 5 (X = I) to 15 (X = Cl) GPa. Metadynamics simulations suggest that B(2)X(4)(µ-X)(2)-based solids are the kinetically preferred product of pressurization of the P6(3)/m solid.

12.
Phys Chem Chem Phys ; 13(38): 16999-7006, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21879063

RESUMO

The search for the means to convert molecular hydrogen to a metal under static conditions at high pressure is reviewed with emphasis on selected recent developments in both experimental studies and theoretical approaches. One approach suggested recently makes use of mixtures of hydrogen and suitable impurities. In these materials hydrogen is perturbed by impurities with the goal of obtaining the metallization of hydrogen at moderate pressures. This approach has also been extensively examined through the use of first-principles methods and we review this recently explored experimental approach and several theoretical studies that have provided an atomic-scale picture of the interaction of hydrogen with impurities under pressure. The objective of this novel approach is to help determine if metallization of hydrogen at pressures is attainable with currently available experimental techniques.

13.
Phys Rev Lett ; 106(14): 145502, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561202

RESUMO

We use a combination of a searching method and first-principles electronic structure calculations to predict novel structures of carbon monoxide (CO) which are energetically more stable than the known structures. The most stable forms of CO at zero pressure consist of metallic polycarbonyl chains with single and double bonds, rather than the familiar triply bonded insulating CO molecules. At pressures >2 GPa the most stable phases are semiconducting and insulating singly bonded three-dimensional framework and layered structures. We also find a molecular Pbcm structure which is more stable than the R3c structure proposed previously for the observed ϵ phase.

14.
Proc Natl Acad Sci U S A ; 107(49): 20893-8, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078957

RESUMO

The high-pressure behavior of silane, SiH(4), plus molecular hydrogen was investigated using a structural search method and ab initio molecular dynamics to predict the structures and examine the physical origin of the pressure-induced drop in hydrogen intramolecular vibrational (vibron) frequencies. A structural distortion is predicted at 15 GPa from a slightly strained fcc cell to a rhombohedral cell that involves a small volume change. The predicted equation of state and the pressure-induced drop in the hydrogen vibron frequencies reproduces well the experimental data (Strobel TA, Somayazulu M, Hemley RJ (2009) Phys Rev Lett 103:065701). The bond weakening in H(2) is induced by intermolecular interactions between the H(2) and SiH(4) molecules. A significant feature of the high-pressure structures of SiH(4)(H(2))(2) is the dynamical behavior of the H(2) molecules. It is found that H(2) molecules are rotating in this pressure range whereas the SiH(4) molecules remain rigid. The detailed nature of the interactions of molecular hydrogen with SiH(4) in SiH(4)(H(2))(2) is therefore strongly influenced by the dynamical behavior of the H(2) molecules in the high-pressure structure. The phase with the calculated structure is predicted to become metallic near 120 GPa, which is significantly lower than the currently suggested pressure for metallization of bulk molecular hydrogen.

15.
Chem Commun (Camb) ; 46(48): 9164-6, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21031222

RESUMO

Synchrotron powder X-ray diffraction, ab initio molecular dynamics calculations and solid state (1)H and (2)H NMR are used to refine the structure of crystalline NH(4)BH(4) including H atoms. Rapid reorientations of both ions mean that on average half-hydrogens occupy the corners of a cube around B or N.

16.
Phys Rev Lett ; 103(5): 055503, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19792513

RESUMO

High-pressure phase transformations of Ca are studied using the metadynamics method to explore the anharmonic free-energy surface, together with a genetic algorithm structural search method to identify lowest enthalpy structures. Disagreement between theory and experiment regarding the structure of Ca in the pressure range 32-119 GPa is partially resolved by the demonstration of different phase transition behavior at 300 K from that at low temperatures. A new lowest enthalpy I4(1)/amd structure is obtained with both methods with an estimated superconducting critical temperature in agreement with experiment.

17.
J Chem Phys ; 130(19): 194512, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19466848

RESUMO

High-pressure structural transformations of carbon at terapascal pressures are studied using metadynamics and ab initio methods. Diamond transforms to a mechanically stable cubic structure (P4(1)32) at 2.5 TPa and 300 K. At 4000 K and 2 TPa, simple cubic carbon SC1 (Pm-3m) is obtained from cubic diamond. The high-pressure tetrahedrally coordinated BC8 (Ia-3) structure of carbon is obtained by decompression of the SC1 structure at 1 TPa and 5000 K. At 3000 K, with decompression of SC1 carbon to 1 TPa, two new metastable tetrahedrally coordinated structures form, MP8 (P2/c) and OP8 (Pccn) with higher density than that of cubic diamond. The results show the presence of strong kinetic effects and suggest that phase transformations and structures of carbon at extreme pressures are more complex than previously thought.

18.
Proc Natl Acad Sci U S A ; 106(15): 6077-81, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332796

RESUMO

Understanding the structural transformations of solid CO(2) from a molecular solid characterized by weak intermolecular bonding to a 3-dimensional network solid at high pressure has challenged researchers for the past decade. We employ the recently developed metadynamics method combined with ab initio calculations to provide fundamental insight into recent experimental reports on carbon dioxide in the 60-80 GPa pressure region. Pressure-induced polymeric phases and their transformation mechanisms are found. Metadynamics simulations starting from the CO(2)-II (P4(2)/mnm) at 60 GPa and 600 K proceed via an intermediate, partially polymerized phase, and finally yield a fully tetrahedral, layered structure (P-4m2). Based on the agreement between calculated and experimental Raman and X-ray patterns, the recently identified phase VI [Iota V, et al. (2007) Sixfold coordinated carbon dioxide VI. Nature Mat 6:34-38], assumed to be disordered stishovite-like, is instead interpreted as the result of an incomplete transformation of the molecular phase into a final layered structure. In addition, an alpha-cristobalite-like structure (P4(1)2(1)2), is predicted to be formed from CO(2)-III (Cmca) via an intermediate Pbca structure at 80 GPa and low temperatures (<300 K). Defects in the crystals are frequently observed in the calculations at 300 K whereas at 500 to 700 K, CO(2)-III transforms to an amorphous form, consistent with experiment [Santoro M, et al. (2006) Amorphous silica-like carbon dioxide. Nature 441:857-860], but the simulation yields additional structural details for this disordered solid.

19.
Phys Rev Lett ; 102(11): 115503, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19392214

RESUMO

Two high-pressure insulating phases of lithium were predicted using random search and evolutionary algorithm methods with first-principles electronic structure calculations. It is shown that lithium will transform from the metallic cubic cI16 phase to an insulating monoclinic C2 structure at 74 GPa. The C2 structure is the most stable phase up to 91 GPa, where it transforms to a second insulating orthorhombic Aba2 structure. The C2 and Aba2 structures are the first theoretical models explicitly showing the band gap opening in compressed lithium. The theoretical findings are supported by recent experimental evidence from electrical resistance and x-ray diffraction measurements.

20.
Phys Rev Lett ; 100(9): 095502, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352721

RESUMO

Oxygen K-edge x-ray absorption spectra of high-density amorphous (HDA) ice, low-density amorphous ice Ic, ice Ih, normal and deuterated liquid water were measured with the synchrotron x-ray Raman scattering method under almost identical experimental conditions by in situ heating of an HDA ice sample. The distinct preedge structure previously reported in water was observed in all the spectra. The results show that core-hole excitations are localized and not strongly affected by the local environment. Therefore, the existence of the preedge feature is not a concise indicator of the magnitude of local disorder within the hydrogen bonded network. The intensity of the near-edge absorption shifts into the postedge region when the hydrogen bond network becomes more ordered. This observation is interpreted as an enhancement of Wannier over Frenkel excitations in an ordered crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA