Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1358909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380094

RESUMO

Flagellotropic bacteriophages are interesting candidates as therapeutics against pathogenic bacteria dependent on flagellar motility for colonization and causing disease. Yet, phage resistance other than loss of motility has been scarcely studied. Here we developed a soft agar assay to study flagellotropic phage F341 resistance in motile Campylobacter jejuni. We found that phage adsorption was prevented by diverse genetic mutations in the lipooligosaccharides forming the secondary receptor of phage F341. Genome sequencing showed phage F341 belongs to the Fletchervirus genus otherwise comprising capsular-dependent C. jejuni phages. Interestingly, phage F341 encodes a hybrid receptor binding protein (RBP) predicted as a short tail fiber showing partial similarity to RBP1 encoded by capsular-dependent Fletchervirus, but with a receptor binding domain similar to tail fiber protein H of C. jejuni CJIE1 prophages. Thus, C. jejuni prophages may represent a genetic pool from where lytic Fletchervirus phages can acquire new traits like recognition of new receptors.

2.
Nat Commun ; 14(1): 4336, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474554

RESUMO

The rapid detection and species-level differentiation of bacterial pathogens facilitates antibiotic stewardship and improves disease management. Here, we develop a rapid bacteriophage-based diagnostic assay to detect the most prevalent pathogens causing urinary tract infections: Escherichia coli, Enterococcus spp., and Klebsiella spp. For each uropathogen, two virulent phages were genetically engineered to express a nanoluciferase reporter gene upon host infection. Using 206 patient urine samples, reporter phage-induced bioluminescence was quantified to identify bacteriuria and the assay was benchmarked against conventional urinalysis. Overall, E. coli, Enterococcus spp., and Klebsiella spp. were each detected with high sensitivity (68%, 78%, 87%), specificity (99%, 99%, 99%), and accuracy (90%, 94%, 98%) at a resolution of ≥103 CFU/ml within 5 h. We further demonstrate how bioluminescence in urine can be used to predict phage antibacterial activity, demonstrating the future potential of reporter phages as companion diagnostics that guide patient-phage matching prior to therapeutic phage application.


Assuntos
Bacteriófagos , Infecções Urinárias , Humanos , Escherichia coli/genética , Bacteriófagos/genética , Klebsiella/genética , Enterococcus/genética , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia
3.
Curr Opin Microbiol ; 71: 102240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446275

RESUMO

Bacteriophages are the most abundant biological entity on earth, acting as the predators and evolutionary drivers of bacteria. Owing to their inherent ability to specifically infect and kill bacteria, phages and their encoded endolysins and receptor-binding proteins (RBPs) have enormous potential for development into precision antimicrobials for treatment of bacterial infections and microbial disbalances; or as biocontrol agents to tackle bacterial contaminations during various biotechnological processes. The extraordinary binding specificity of phages and RBPs can be exploited in various areas of bacterial diagnostics and monitoring, from food production to health care. We review and describe the distinctive features of phage RBPs, explain why they are attractive candidates for use as therapeutics and in diagnostics, discuss recent applications using RBPs, and finally provide our perspective on how synthetic technology and artificial intelligence-driven approaches will revolutionize how we use these tools in the future.


Assuntos
Bacteriófagos , Proteínas de Transporte , Proteínas de Transporte/metabolismo , Receptores de Bacteriófagos/metabolismo , Inteligência Artificial , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bactérias/genética , Bactérias/metabolismo
4.
Front Microbiol ; 12: 780559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970240

RESUMO

Phages infecting Campylobacter jejuni are considered a promising intervention strategy at broiler farms, yet phage sensitivity of naturally occurring poultry isolates is not well studied. Here, we investigated phage sensitivity and identified resistance mechanisms of C. jejuni strains originating from Danish broilers belonging to the most prevalent MLST (ST) types. Determining plaque formation of 51 phages belonging to Fletchervirus or Firehammervirus showed that 21 out of 31 C. jejuni strains were susceptible to at least one phage. While C. jejuni ST-21 strains encoded the common phase variable O-methyl phosphoramidate (MeOPN) receptor of the Fletchervirus and were only infected by these phages, ST-45 strains did not encode this receptor and were exclusively infected by Firehammervirus phages. To identify internal phage resistance mechanism in ST-21 strains, we performed comparative genomics of two strains, CAMSA2002 sensitive to almost all Fletchervirus phages and CAMSA2038, resistant to all 51 phages. The strains encoded diverse clustered regularly interspaced short palindromic repeats (CRISPR) spacers but none matched the tested phages. Sequence divergence was also observed in a predicted SspE homolog and putative restriction modification systems including a methyl-specific McrBC endonuclease. Furthermore, when mcrB was deleted, CAMSA2038 became sensitive to 17 out of 43 phages, three being Firehammervirus phages that otherwise did not infect any ST-21 strains. Yet, 16 phages demonstrated significantly lower efficiencies of plating on the mcrB mutant suggesting additional resistance mechanism still restricting phage propagation in CAMSA2038. Thus, our work demonstrates that C. jejuni isolates originating from broilers may have acquired several resistance mechanisms to successfully prevent phage infection in their natural habitat.

5.
Cell Rep ; 35(10): 109214, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107245

RESUMO

Phase variation is a common mechanism for creating phenotypic heterogeneity of surface structures in bacteria important for niche adaptation. In Campylobacter, phase variation occurs by random variation in hypermutable homonucleotide 7-11 G (polyG) tracts. To elucidate how phages adapt to phase-variable hosts, we study Fletchervirus phages infecting Campylobacter dependent on a phase-variable receptor. Our data demonstrate that Fletcherviruses mimic their host and encode hypermutable polyG tracts, leading to phase-variable expression of two of four receptor-binding proteins. This creates phenotypically diverse phage populations, including a sub-population that infects the bacterial host when the phase-variable receptor is not expressed. Such population dynamics of both phage and host promote co-existence in a shared niche. Strikingly, we identify polyG tracts in more than 100 phage genera, infecting more than 70 bacterial species. Future experimental work may confirm phase variation as a widespread strategy for creating phenotypically diverse phage populations.


Assuntos
Infecções Bacterianas/microbiologia , Bacteriófagos/química , Campylobacter/química , Fenótipo
6.
Phage (New Rochelle) ; 2(1): 43-49, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148439

RESUMO

Introduction: Because of the clinical relevance of Mycobacteria, and from a therapeutic perspective, there is an increasing interest to study phages that infect bacteria belonging to this genus. Materials and Methods: A phage was isolated from a soil sample, using Mycobacterium smegmatis as host. Its characterization included sequencing, annotation, and analysis of the genome, host range determination, and electron microscopy imaging. Results: Mycobacterium phage vB_MsmS_Celfi is a temperate phage able to infect Mycobacterium tuberculosis with high efficiency. From electron microscopy images, Celfi belongs to the Siphoviridae family. Genome analysis classified phage Celfi into cluster L, subcluster L2 of Actinobacteriophage clusters. Mycobacterium phage Celfi exhibits a Lysin B distant to those present in other members of the subcluster and other mycobacteriophages. Conclusions: The discovery of new phages that infect M. tuberculosis could contribute to the development of novel tools for detection systems and future treatment of the disease.

7.
Phage (New Rochelle) ; 2(1): 57-63, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148441

RESUMO

Introduction: Only a few Lactobacillus casei phages have so far been characterized. As several L. casei strains are part of probiotic formulations, bacteriophage outbreaks targeting these strains can lead to critical losses within the dairy industry. Materials and Methods: A new L. casei phage was isolated from raw milk obtained from a milking yard from the province of Buenos Aires. The phage genome was sequenced, annotated, and analyzed. Morphology was determined by electron microscopy and the host range was established. Results: Lactobacillus phage vB_LcaM_Lbab1 is a member of the Herelleviridae family and features a host range including L. casei/Lactobacillus paracasei and Lactobacillus kefiri strains. We further analyzed the baseplate proteins in silico and found putative carbohydrate binding modules that are responsible for host recognition in other Lactobacillus phages. Conclusions: A new Lactobacillus phage was isolated and characterized. The focus was made on its host recognition mechanism, pointing toward the development of future strategies to avoid deleterious infections in the dairy industry.

8.
Genomics ; 113(1 Pt 1): 411-419, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301894

RESUMO

Listeria monocytogenes is an important food-borne pathogen and its bacteriophages are promising tools for its control in food and surfaces. Listeria bacteriophages belonging to the genus Pecentumvirus of the family Herelleviridae are strictly lytic, have a contractile tail and a large double stranded DNA genome (mean of 135.4 kb). We report the isolation and genome sequences of two new Pecentumvirus bacteriophages: vB_Lino_VEfB7 and vB_Liva_VAfA18. Twenty-one bacteriophages of this genus have been described and their genomes were used for the study of Pecentumvirus evolution. Analyses showed collinear genomes and gene gain and loss propensity and recombination events were distinctly found in two regions. A large potential recombination event (≈20 kB) was detected in P100 and vB_Liva_VAfA18. Phylogenetic analyses of multi-gene alignments showed that diversification events formed two groups of species distantly related.


Assuntos
Bacteriófagos/genética , Evolução Molecular , Genes Virais , Listeria monocytogenes/virologia , Recombinação Genética , Bacteriófagos/classificação , Bacteriófagos/patogenicidade , Deleção de Genes , Filogenia , Proteínas Virais/genética
9.
Food Microbiol ; 92: 103586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950171

RESUMO

Salmonella is one of the most common agents of foodborne disease worldwide. As natural alternatives to traditional antimicrobial agents, bacteriophages (phages) are emerging as highly effective biocontrol agents against Salmonella and other foodborne bacteria. Due to the high diversity within the Salmonella genus and emergence of drug resistant strains, improved efforts are necessary to find broad range and strictly lytic Salmonella phages for use in food biocontrol. Here, we describe the isolation and characterization of two Salmonella phages: ST-W77 isolated on S. Typhimurium and SE-W109 isolated on S. Enteritidis with extraordinary Salmonella specificity. Whole genome sequencing identified ST-W77 as a Myovirus within the Viunalikevirus genus and SE-W109 as a Siphovirus within the Jerseylikevirus genus. Infectivity studies using a panel of S. Typhimurium cell wall mutants revealed both phages require the lipopolysaccharide O-antigen, with SE-W109 also recognizing the flagella, during infection of Salmonella. A combination of both phages was capable of prolonged (one-week) antibacterial activity when added to milk or chicken meat contaminated with Salmonella. Due to their broad host ranges, strictly lytic lifestyles and lack of lysogeny-related genes or virulence genes in their genomes, ST-W77 and SE-W109 are ideal phages for further development as Salmonella biocontrol agents for food production.


Assuntos
Myoviridae/isolamento & purificação , Fagos de Salmonella/isolamento & purificação , Siphoviridae/isolamento & purificação , Animais , Galinhas , Microbiologia de Alimentos , Genoma Viral , Especificidade de Hospedeiro , Carne/microbiologia , Leite/microbiologia , Myoviridae/classificação , Myoviridae/genética , Myoviridae/fisiologia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Salmonella typhimurium/virologia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/fisiologia , Tailândia , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Syst Biol ; 69(1): 110-123, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127947

RESUMO

Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.


Assuntos
Caudovirales/classificação , Filogenia , Caudovirales/genética , Classificação , Genoma Viral/genética
12.
Eur Urol Focus ; 6(3): 518-521, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732462

RESUMO

Bacterial urinary tract infections (UTIs) are very frequent, especially in patients with neurogenic lower urinary tract dysfunction (NLUTD). The steady increase in antibiotic resistance among causative bacteria prompts the search for highly effective therapeutic alternatives with little or no side effects. Bacteriophages - obligate intracellular viruses that solely infect and kill bacteria - are promising tools for treating bacterial infections and have been used for this purpose for almost a century. Recent clinical studies using bacteriophage therapy for UTIs showed encouraging results. In particular, patients with recurrent UTIs, such as individuals with NLUTD who rely on assisted bladder emptying, might benefit from this treatment method. However, bacteriophages are not yet a panacea. More high-quality basic and clinical research on bacteriophage therapy is needed to answer questions on the use of this therapeutic option and its potential to provide a solution to the global threat of multidrug-resistant bacteria. PATIENT SUMMARY: Urinary tract infections are very common, especially in patients with neurogenic lower urinary tract dysfunction. In this review we discuss the potential of bacteriophage therapy as an alternative to antibiotics for treating patients with bladder infections.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos , Terapia por Fagos , Infecções Urinárias/terapia , Infecções Bacterianas/etiologia , Humanos , Doenças do Sistema Nervoso/complicações , Infecções Urinárias/etiologia , Doenças Urológicas/complicações , Doenças Urológicas/etiologia
13.
BMC Microbiol ; 19(1): 212, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488056

RESUMO

BACKGROUND: Several serious vegetable-associated outbreaks of enterohemorrhagic Escherichia coli (EHEC) infections have occurred during the last decades. In this context, vegetables have been suggested to function as secondary reservoirs for EHEC strains. Increased knowledge about the interaction of EHEC with plants including gene expression patterns in response to plant-derived compounds is required. In the current study, EHEC O157:H7 strain Sakai, EHEC O157:H- strain 3072/96, and the EHEC/enteroaggregative E. coli (EAEC) hybrid O104:H4 strain C227-11φcu were grown in lamb's lettuce medium and in M9 minimal medium to study the differential transcriptional response of these strains to plant-derived compounds with RNA-Seq technology. RESULTS: Many genes involved in carbohydrate degradation and peptide utilization were similarly upregulated in all three strains, suggesting that the lamb's lettuce medium provides sufficient nutrients for proliferation. In particular, the genes galET and rbsAC involved in galactose metabolism and D-ribose catabolism, respectively, were uniformly upregulated in the investigated strains. The most prominent differences in shared genome transcript levels were observed for genes involved in the expression of flagella. Transcripts of all three classes of the flagellar hierarchy were highly abundant in strain C227-11φcu. Strain Sakai expressed only genes encoding the basal flagellar structure. In addition, both strains showed increased motility in presence of lamb's lettuce extract. Moreover, strain 3072/96 showed increased transcription activity for genes encoding the type III secretion system (T3SS) including effectors, and was identified as a powerful biofilm-producer in M9 minimal medium. CONCLUSION: The current study provides clear evidence that EHEC and EHEC/EAEC strains are able to adjust their gene expression patterns towards metabolization of plant-derived compounds, demonstrating that they may proliferate well in a plant-associated environment. Moreover, we propose that flagella and other surface structures play a fundamental role in the interaction of EHEC and EHEC/EAEC with plants.


Assuntos
Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Metabolismo dos Carboidratos/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/fisiologia , Flagelos/genética , Perfilação da Expressão Gênica , Lactuca/química , Locomoção/efeitos dos fármacos , Compostos Fitoquímicos/química , Sistemas de Secreção Tipo III/genética
14.
Viruses ; 11(6)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195709

RESUMO

Despite a wealth of knowledge on Salmonella phages worldwide, little is known about poultry-associated Salmonella phages from Thailand. Here, we isolated 108 phages from Thai poultry farms that infect Salmonellaenterica serovar Typhimurium. Phages STm101 and STm118 were identified as temperate Siphoviridae phages. Genome sequencing and analyses revealed these phages share approximately 96% nucleotide sequence similarity to phage SPN19, a member of the Chi-like virus genus. PCR amplification of the gene encoding capsid protein E of the Chi-like phage was positive for 50% of phage isolates, suggesting a predominance of this phage type among the sampled poultry farms. In addition to the flagella, two phages required the lipopolysaccharide to infect and lyse Salmonella. Furthermore, phylogenomic analysis demonstrated that phages STm101 and STm118 formed a monophyletic clade with phages isolated from Western countries, but not from closer isolated phages from Korea. However, further investigation and more phage isolates are required to investigate possible causes for this geographic distribution.


Assuntos
Aves Domésticas/virologia , Fagos de Salmonella , Salmonella typhimurium/virologia , Siphoviridae , Animais , Fazendas , Genoma Viral , Filogenia , Filogeografia , Aves Domésticas/microbiologia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/isolamento & purificação , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Tailândia
15.
Sci Rep ; 9(1): 1984, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760727

RESUMO

Bacillus cytotoxicus is a member of the Bacillus cereus group linked to fatal cases of diarrheal disease. Information on B. cytotoxicus is very limited; in particular comprehensive genomic data is lacking. Thus, we applied a genomic approach to characterize B. cytotoxicus and decipher its population structure. To this end, complete genomes of ten B. cytotoxicus were sequenced and compared to the four publicly available full B. cytotoxicus genomes and genomes of other B. cereus group members. Average nucleotide identity, core genome, and pan genome clustering resulted in clear distinction of B. cytotoxicus strains from other strains of the B. cereus group. Genomic content analyses showed that a hydroxyphenylalanine operon is present in B. cytotoxicus, but absent in all other members of the B. cereus group. It enables degradation of aromatic compounds to succinate and pyruvate and was likely acquired from another Bacillus species. It allows for utilization of tyrosine and might have given a B. cytotoxicus ancestor an evolutionary advantage resulting in species differentiation. Plasmid content showed that B. cytotoxicus is flexible in exchanging genes, allowing for quick adaptation to the environment. Genome-based phylogenetic analyses divided the B. cytotoxicus strains into four clades that also differed in virulence gene content.


Assuntos
Bacillus/classificação , Bacillus/genética , Doenças Transmitidas por Alimentos/microbiologia , Gastroenteropatias/microbiologia , Genoma Bacteriano/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Microbiologia de Alimentos , Inocuidade dos Alimentos , Filogenia , Plasmídeos/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
16.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606715

RESUMO

Contractile injection systems (bacteriophage tails, type VI secretions system, R-type pyocins, etc.) utilize a rigid tube/contractile sheath assembly for breaching the envelope of bacterial and eukaryotic cells. Among contractile injection systems, bacteriophages that infect Gram-positive bacteria represent the least understood members. Here, we describe the structure of Listeria bacteriophage A511 tail in its pre- and post-host attachment states (extended and contracted, respectively) using cryo-electron microscopy, cryo-electron tomography, and X-ray crystallography. We show that the structure of the tube-baseplate complex of A511 is similar to that of phage T4, but the A511 baseplate is decorated with different receptor-binding proteins, which undergo a large structural transformation upon host attachment and switch the symmetry of the baseplate-tail fiber assembly from threefold to sixfold. For the first time under native conditions, we show that contraction of the phage tail sheath assembly starts at the baseplate and propagates through the sheath in a domino-like motion.


Assuntos
Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Listeria/virologia , Conformação Proteica , Proteínas da Cauda Viral/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Infecções , Listeria/crescimento & desenvolvimento , Modelos Moleculares , Proteínas da Cauda Viral/metabolismo
17.
Arch Virol ; 164(3): 819-830, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673846

RESUMO

Bacteriophages represent a promising alternative for controlling pathogenic bacteria. They are ubiquitous in the environment, and their isolation is usually simple and fast. However, not every phage is suitable for biocontrol applications. It must be virulent (i.e., strictly lytic), non-transducing, and safe. We have developed a method for identifying selected types of virulent phages at an early stage of the isolation process to simplify the search for suitable candidates. Using the major capsid protein (MCP) as a phylogenetic marker, we designed degenerate primers for the identification of Felix O1-, GJ1-, N4-, SP6-, T4-, T7-, and Vi1-like phages in multiplex PCR setups with single phage plaques as templates. Performance of the MCP PCR assay was evaluated with a set of 26 well-characterized phages. Neither false-positive nor false-negative results were obtained. In addition, 154 phages from enrichment cultures from various environmental samples were subjected to MCP PCR analysis. Eight of them, specific for Salmonella enterica, Escherichia coli, or Erwinia amylovora, belonged to one of the selected phage types. Their PCR-based identification was successfully confirmed by pulsed-field gel electrophoresis of the phage genomes, electron microscopy, and sequencing of the amplified mcp gene fragment. The MCP PCR assay was shown to be a simple method for preliminary assignment of new phages to a certain group and thus to identify candidates for biocontrol immediately after their isolation. Given that sufficient sequence data are available, this method can be extended to any phage group of interest.


Assuntos
Bacteriófagos/isolamento & purificação , Proteínas do Capsídeo/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Erwinia amylovora/virologia , Escherichia coli/virologia , Filogenia , Salmonella enterica/virologia , Virulência
19.
Biometals ; 31(6): 1101-1114, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30284644

RESUMO

The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by stepwise passage in culture media containing increasing concentrations of AgNO3. The published genome of E. coli ATCC 8739 contains a region showing strong homology to the Sil system genes. The role of this region in E. coli ATCC 8739 was assessed by monitoring the expression of silC upon silver stress, which resulted in a 350-fold increased expression. De novo sequencing of the whole genome of a silver resistant strain derived from E. coli ATCC 8739 revealed mutations in ORFs putative for SilR and CusR. The silver resistant strain (E. coli AgNO3R) showed constitutive expression of silC which posed a cost of fitness resulting in retarded growth. Furthermore, E. coli AgNO3R exhibited cross-resistance to ciprofloxacin and a slightly increased tolerance to ampicillin. This study demonstrates that E. coli is able to develop resistance to silver, which may pose a threat towards an effective use of silver compounds as antiseptics.


Assuntos
Antibacterianos/farmacologia , Cromossomos/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Mapeamento Cromossômico , Testes de Sensibilidade Microbiana
20.
Structure ; 26(12): 1573-1582.e4, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244968

RESUMO

The ability of phages to infect specific bacteria has led to their exploitation as bio-tools for bacterial remediation and detection. Many phages recognize bacterial hosts via adhesin tips of their long tail fibers (LTFs). Adhesin sequence plasticity modulates receptor specificity, and thus primarily defines a phage's host range. Here we present the crystal structure of an adhesin (gp38) attached to a trimeric ß-helical tip (gp37) from the Salmonella phage S16 LTF. Gp38 contains rare polyglycine type II helices folded into a packed lattice, herein designated "PGII sandwich." Sequence variability within the domain is limited to surface-exposed helices and distal loops that form putative receptor-binding sites. In silico analyses revealed a prevalence of the adhesin architecture among T-even phages, excluding the archetypal T4 phage. Overall, S16 LTF provides a valuable model for understanding binding mechanisms of phage adhesins, and for engineering of phage adhesins with expandable or modulated host ranges.


Assuntos
Peptídeos/metabolismo , Fagos de Salmonella/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Domínios Proteicos , Fagos de Salmonella/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA