Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 43(10): 2792-803, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15005614

RESUMO

Strict coordination of the two motor domains of kinesin is required for driving the processive movement of organelles along microtubules. Glutamate 164 of the kinesin heavy chain was shown to be critical for kinesin function through in vivo genetics in Drosophila melanogaster. The mutant motor E164K exhibited reduced steady-state ATPase activity and higher affinity for both ATP and microtubules. Moreover, an alanine substitution at this position (E164A) caused similar defects. It became stalled on the microtubule and was unable to bind and hydrolyze ATP at the second motor domain. Glu(164), which has been conserved through evolution, is located at the motor-microtubule interface close to key residues on helix alpha12 of beta-tubulin. We explored further the contributions of Glu(164) to motor function using several site-directed mutant proteins: E164K, E164N, E164D, E164Q, and D165A. The results indicate that the microtubule-E164K complex can only bind and hydrolyze one ATP. ATP with increased salt was able to dissociate a population of E164K motors from the microtubule but could not dissociate E164A. We tested the basis of the stabilized microtubule interaction with E164K, E164N, and E164A. The results provide new insights about the motor-microtubule interface and the pathway of communication for processive motility.


Assuntos
Difosfato de Adenosina/análogos & derivados , Comunicação Celular , Proteínas de Drosophila/química , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Mutagênese Sítio-Dirigida , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Alanina/genética , Animais , Sítios de Ligação/genética , Catálise , Comunicação Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Ácido Glutâmico/genética , Hidrólise , Cinesinas/fisiologia , Cinética , Lisina/genética , Microtúbulos/fisiologia , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , ortoaminobenzoatos/química
2.
Proc Natl Acad Sci U S A ; 101(10): 3444-9, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-14985504

RESUMO

We have identified dimeric kinesin mutants that become stalled on the microtubule after one ATP turnover, unable to bind and hydrolyze ATP at their second site. We have used these mutants to determine the regulatory signal that allows ATP to bind to the forward head, such that processive movement can continue. The results show that phosphate release occurs from the rearward head before detachment, and detachment triggers active-site accessibility for ATP binding at the forward head. This mechanism, in which the rearward head controls the behavior of the forward head, may be conserved among processive motors.


Assuntos
Proteínas de Drosophila/química , Cinesinas/química , Proteínas Motores Moleculares/química , Trifosfato de Adenosina/metabolismo , Animais , Dimerização , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Técnicas In Vitro , Cinesinas/genética , Cinesinas/metabolismo , Cinética , Substâncias Macromoleculares , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Ratos
3.
J Biol Chem ; 278(40): 39059-67, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12860992

RESUMO

Switch I and II are key active site structural elements of kinesins, myosins, and G-proteins. Our analysis of a switch I mutant (R210A) in Drosophila melanogaster kinesin showed a reduction in microtubule affinity, a loss in cooperativity between the motor domains, and an ATP hydrolysis defect leading to aberrant detachment from the microtubule. To investigate the conserved arginine in switch I further, a lysine substitution mutant was generated. The R210K dimeric motor has lost the ability to hydrolyze ATP; however, it has rescued microtubule function. Our results show that R210K has restored microtubule association kinetics, microtubule affinity, ADP release kinetics, and motor domain cooperativity. Moreover, the active site at head 1 is able to distinguish ATP, ADP, and AMP-PNP to signal head 2 to bind the microtubule and release mantADP with kinetics comparable with wild-type. Therefore, the structural pathway of communication from head 1 to head 2 is restored, and head 2 can respond to this signal by binding the microtubule and releasing mantADP. Structural modeling revealed that lysine could retain some of the hydrogen bonds made by arginine but not all, suggesting a structural hypothesis for the ability of lysine to rescue microtubule function in the Arg210 mutant.


Assuntos
Arginina/química , Cinesinas/química , Cinesinas/genética , Lisina/química , Microtúbulos/fisiologia , Mutação , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Bovinos , Dimerização , Relação Dose-Resposta a Droga , Drosophila melanogaster , Genes de Troca , Humanos , Ligação de Hidrogênio , Hidrólise , Cinética , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Ratos
4.
Biochemistry ; 42(9): 2595-606, 2003 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-12614154

RESUMO

Conventional kinesin is a highly processive, microtubule-based motor protein that drives the movement of membranous organelles in neurons. Using in vivo genetics in Drosophila melanogaster, Glu164 was identified as an amino acid critical for kinesin function [Brendza, K. M., Rose, D. J., Gilbert, S. P., and Saxton, W. M. (1999) J. Biol. Chem. 274, 31506-31514]. Glu164 is located at the beta-strand 5a/loop 8b junction of the catalytic core and projects toward the microtubule binding face in close proximity to key residues on beta-tubulin helix alpha12. Substitution of Glu(164) with alanine (E164A) results in a dimeric kinesin with a dramatic reduction in the microtubule-activated steady-state ATPase (5 s(-1) per site versus 22 s(-1) per site for wild-type). Our analysis shows that E164A binds ATP and microtubules with a higher affinity than wild-type kinesin. The rapid quench and stopped-flow results provide evidence that ATP hydrolysis is significantly faster and the precise coordination between the motor domains is disrupted. The data reveal an E164A intermediate that is stalled on the microtubule and cannot bind and hydrolyze ATP at the second head.


Assuntos
Difosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/análogos & derivados , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/enzimologia , Proteínas Motores Moleculares/enzimologia , Mutagênese Sítio-Dirigida , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/genética , Animais , Sítios de Ligação/genética , Bovinos , Dimerização , Proteínas de Drosophila/genética , Ácido Glutâmico/genética , Humanos , Hidrólise , Cinesinas/genética , Cinética , Microtúbulos/genética , Proteínas Motores Moleculares/genética , Estrutura Terciária de Proteína/genética , Ratos , Eletricidade Estática , ortoaminobenzoatos/metabolismo
5.
J Biol Chem ; 277(19): 17079-87, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11864969

RESUMO

Conventional kinesin is a highly processive, plus-end-directed microtubule-based motor that drives membranous organelles toward the synapse in neurons. Although recent structural, biochemical, and mechanical measurements are beginning to converge into a common view of how kinesin converts the energy from ATP turnover into motion, it remains difficult to dissect experimentally the intermolecular domain cooperativity required for kinesin processivity. We report here our pre-steady-state kinetic analysis of a kinesin switch I mutant at Arg(210) (NXXSSRSH, residues 205-212 in Drosophila kinesin). The results show that the R210A substitution results in a dimeric kinesin that is defective for ATP hydrolysis and a motor that cannot detach from the microtubule although ATP binding and microtubule association occur. We propose a mechanistic model in which ATP binding at head 1 leads to the plus-end-directed motion of the neck linker to position head 2 forward at the next microtubule binding site. However, ATP hydrolysis is required at head 1 to lock head 2 onto the microtubule in a tight binding state before head 1 dissociation from the microtubule. This mechanism optimizes forward movement and processivity by ensuring that one motor domain is tightly bound to the microtubule before the second can detach.


Assuntos
Trifosfato de Adenosina/fisiologia , Hidrólise , Cinesinas/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/farmacologia , Animais , Arginina/química , Sítios de Ligação , Encéfalo/metabolismo , Bovinos , Relação Dose-Resposta a Droga , Cinesinas/química , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Fatores de Tempo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA