RESUMO
Background/Objectives: Trefoil factor 1 (TFF1) plays a role in the mucus barrier. Methods: To evaluate the prevalence of TFF1 expression in cancer, a tissue microarray containing 18,878 samples from 149 tumor types and 608 samples of 76 normal tissue types was analyzed through immunohistochemistry (IHC). Results: TFF1 staining was detectable in 65 of 149 tumor categories. The highest rates of TFF1 positivity were found in mucinous ovarian carcinomas (76.2%), colorectal adenomas and adenocarcinomas (47.1-75%), breast neoplasms (up to 72.9%), bilio-pancreatic adenocarcinomas (42.1-62.5%), gastro-esophageal adenocarcinomas (40.4-50.0%), neuroendocrine neoplasms (up to 45.5%), cervical adenocarcinomas (39.1%), and urothelial neoplasms (up to 24.3%). High TFF1 expression was related to a low grade of malignancy in non-invasive urothelial carcinomas of the bladder (p = 0.0225), low grade of malignancy (p = 0.0003), estrogen and progesterone receptor expression (p < 0.0001), non-triple negativity (p = 0.0005) in invasive breast cancer of no special type, and right-sided tumor location (p = 0.0021) in colorectal adenocarcinomas. Conclusions: TFF1 IHC has only limited utility for the discrimination of different tumor entities given its expression in many tumor entities. The link between TFF1 expression and parameters of malignancy argues for a relevant biological role of TFF1 in cancer. TFF1 may represent a suitable therapeutic target due to its expression in only a few normal cell types.
RESUMO
Thyroid transcription factor 1 (TTF-1) immunohistochemistry (IHC) is routinely used for the distinction of primary pulmonary adenocarcinomas. However, TTF-1 can also occur in other malignancies. A tissue microarray containing 17,772 samples from 152 different tumor types was analyzed. Napsin-A, CK20, SATB2, FABP1, and Villin-1 IHC data were available from previous studies. TTF-1 staining was seen in 82 of 152 tumor categories including thyroidal cancers (19-100%), adenocarcinomas (94%), neuroendocrine tumors (67%) of the lung, small cell neuroendocrine carcinomas (71-80%), mesenchymal tumors (up to 42%), and thymomas (39%). Comparative analysis of TTF-1 and Napsin-A revealed a sensitivity/specificity of 94%/86% (TTF-1), 87%/98% (Napsin-A), and 85%/99.1% (TTF-1 and Napsin-A) for the distinction of pulmonary adenocarcinomas. Combined analysis of TTF-1 and enteric markers revealed a positivity for TTF-1 and at least one enteric marker in 22% of pulmonary adenocarcinomas but also a TTF-1 positivity in 6% of colorectal, 2% of pancreatic, and 3% of gastric adenocarcinomas. TTF-1 is a marker of high sensitivity but insufficient specificity for pulmonary adenocarcinomas. A small fraction of TTF-1-positive gastrointestinal adenocarcinomas represents a pitfall mimicking enteric-type pulmonary adenocarcinoma. Combined analysis of TTF-1 and Napsin-A improves the specificity of pulmonary adenocarcinoma diagnosis.
RESUMO
17p13 deletions including TP53 and other genes represent a common cause for reduced/lost p53 function in tumor cells. In this study, we analyzed the impact of 17p13 (TP53) deletions and p53 expression on tumor aggressiveness and patient prognosis in urothelial carcinoma. The 17p13 copy number status was analyzed by fluorescence in situ hybridization (FISH) on more than 2700 urothelial bladder carcinomas in a tissue microarray format. 17p13 deletion data were compared to p53 expression data measured by immunohistochemistry (IHC) in a previous study. Different types of p53 alterations were compared with tumor phenotype and clinical outcome data. Deletions of 17p13 occurred in 23% of 2185 analyzable carcinomas. The fraction of tumors with 17p13 deletions increased from pTa G2 low (9%) to pTa G3 (24%, p < 0.0001). In muscle-invasive carcinomas, 17p13 deletions were associated with advanced pT stage (p = 0.0246), but unrelated to patient prognosis (p > 0.5). 17p13 deletions were significantly related to p53 immunostaining (p = 0.0375). 17p13 deletions were most common in tumors with complete lack of p53 staining (31%), which supports the concept that many of these tumors have a complete loss of p53 function (p53 null phenotype). 17p13 deletions were also increased in tumors with high p53 staining (25%). In conclusion, 17p13 deletions were most commonly seen in p53 negative cancers, supporting their role as a cause for the p53 null phenotype in urothelial cancer. The association of 17p13 deletions with high grade and advanced pT stage may reflect increasing genomic instability going along with stage and grade progression.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 17 , Fenótipo , Proteína Supressora de Tumor p53 , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Prognóstico , Cromossomos Humanos Par 17/genética , Proteína Supressora de Tumor p53/genética , Masculino , Feminino , Hibridização in Situ Fluorescente , Idoso , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: Several new molecular markers in colorectal carcinomas have been discovered; however, classical histopathological predictors are still being used to predict survival in patients. We present a novel risk score, which uses molecular markers, to predict outcomes in patients with colorectal carcinoma. METHODS: The immunohistochemistry of tissue micro arrays was used to detect and quantify H2BUB1, RBM3 and Ki-67. Different intensities of staining were categorized for these markers and a score was established. A multivariate analysis was performed and survival curves were established. RESULTS: 1791 patients were evaluated, and multivariate analysis revealed that our risk score, the 3-biomarker classifier, is an independent marker to predict survival. We found a high risk-score to be associated with dismal median survival for the patients. CONCLUSIONS: A more personalized score might be able to better discriminate low- and high-risk patients and suggest adjuvant treatment compared to classical pathological staging. Our score can serve as a tool to predict outcomes in patients suffering from colorectal carcinoma.
RESUMO
PAX8 plays a role in development of the thyroid, kidney, and the Wolffian and Mullerian tract. In surgical pathology, PAX8 immunohistochemistry is used to determine tumors of renal and ovarian origin, but data on its expression in other tumors are conflicting. To evaluate PAX8 expression in normal and tumor tissues, a tissue microarray containing 17,386 samples from 149 different tumor types and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. PAX8 results were compared with previously collected data on cadherin 16 (CDH16). PAX8 positivity was found in 40 different tumor types. The highest rate of PAX8 positivity was found in thyroidal neoplasms of follicular origin (98.6-100%), gynecological carcinomas (up to 100%), renal tumors (82.6-97.8%), and urothelial neoplasms (2.3-23.7%). Important tumors with near complete absence of PAX8 staining (< 1%) included all subtypes of breast cancers, hepatocellular carcinomas, gastric, prostatic, pancreatic, and pulmonary adenocarcinomas, neuroendocrine neoplasms, small cell carcinomas of various sites, and lymphomas. High PAX8 expression was associated with low tumor grade in 365 non-invasive papillary urothelial carcinomas (p < 0.0001) but unrelated to patient outcome and/or tumor phenotype in clear cell renal cell carcinoma, high-grade serous ovarian cancer, and endometrioid endometrial carcinoma. For determining a renal tumor origin, sensitivity was 88.1% and specificity 87.2% for PAX8, while sensitivity was 85.3% and specificity 95.7% for CDH16. The combination of PAX8 and CDH16 increased specificity to 96.8%. In conclusion, PAX8 immunohistochemistry is a suitable diagnostic tool. The combination of PAX8 and CDH16 positivity has high specificity for renal cell carcinoma.
Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Neoplasias , Fator de Transcrição PAX8 , Análise Serial de Tecidos , Humanos , Fator de Transcrição PAX8/análise , Biomarcadores Tumorais/análise , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/diagnóstico , Caderinas/análise , Caderinas/metabolismo , FemininoRESUMO
Loss of S-methyl-5'-thioadenosine phosphorylase (MTAP) expression is a common event in cancer leading to a critical vulnerability of cancer cells towards anti-cancer drugs. Homozygous MTAP deletions result in a complete expression loss that can be detected by immunohistochemistry (IHC). In this study, a tissue microarray containing 17,078 samples from 149 different tumor entities was analyzed by IHC, and complete MTAP loss was validated by fluorescence in situ hybridization. MTAP loss was observed in 83 of 149 tumor categories, including neuroendocrine neoplasms (up to 80%), Hodgkin lymphoma (50.0%), mesothelioma (32.0% to 36.8%), gastro-intestinal adenocarcinoma (4.0% to 40.5%), urothelial neoplasms (10.5% to 36.7%), squamous cell carcinomas (up to 38%), and various types of sarcomas (up to 20%) and non-Hodgkin lymphomas (up to 14%). Homozygous MTAP deletion was found in 90% to 100% of cases with MTAP expression loss in most tumor categories. However, neuroendocrine tumors, Hodgkin lymphomas, and other lymphomas lacked MTAP deletions. MTAP deficiency was significantly linked to unfavorable tumor phenotype in selected tumor entities and the presence of PD-L1 expression on tumor cells, absence of PD-L1 expression on immune cells, and a low density of CD8 + lymphocytes. In summary, MTAP deficiency can occur in various tumor entities and is linked to unfavorable tumor phenotype and noninflamed tumor microenvironment, but is not always related to deletions. MTAP IHC is of considerable diagnostic value for the detection of neoplastic transformation in multiple different applications.
Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias , Purina-Núcleosídeo Fosforilase , Análise Serial de Tecidos , Humanos , Purina-Núcleosídeo Fosforilase/análise , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/deficiência , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/patologia , Antígeno B7-H1/análise , Homozigoto , Prevalência , Microambiente Tumoral , Deleção de Genes , Predisposição Genética para DoençaRESUMO
Stimulator of interferon genes protein (STING) activates the immune response in inflammatory cells. STING expression in cancer cells is less well characterized, but STING agonists are currently being evaluated as anticancer drugs. A tissue microarray containing 18,001 samples from 139 different tumor types was analyzed for STING by immunohistochemistry. STING-positive tumor cells were found in 130 (93.5%) of 139 tumor entities. The highest STING positivity rates occurred in squamous cell carcinomas (up to 96%); malignant mesothelioma (88.5%-95.7%); adenocarcinoma of the pancreas (94.9%), lung (90.3%), cervix (90.0%), colorectum (75.2%), and gallbladder (68.8%); and serous high-grade ovarian cancer (86.0%). High STING expression was linked to adverse phenotypes in breast cancer, clear cell renal cell carcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, and papillary carcinoma of the thyroid (p < 0.05). In pTa urothelial carcinomas, STING expression was associated with low-grade carcinoma (p = 0.0002). Across all tumors, STING expression paralleled PD-L1 positivity of tumor and inflammatory cells (p < 0.0001 each) but was unrelated to the density of CD8+ lymphocytes. STING expression is variable across tumor types and may be related to aggressive tumor phenotype and PD-L1 positivity. The lack of relationship with tumor-infiltrating CD8+ lymphocytes argues against a significant IFN production by STING positive tumor cells.
RESUMO
BACKGROUND: Kallikrein-related peptidase 7 (KLK7) is a chymotrypsin-like serine protease which is essential for the desquamation of corneocytes and thus plays a pivotal role in maintaining skin homeostasis. In cancer, KLK7 overexpression was suggested to represent a route for metastasis through cleavage of cell junction and extracellular matrix proteins of cancer cells. METHODS: To comprehensively determine KLK7 protein expression in normal and neoplastic tissues, a tissue microarray containing 13,447 samples from 147 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS: KLK7 positivity was found in 64 of 147 tumor categories, including 17 tumor categories with at least one strongly positive case. The highest rate of KLK7 positivity was found in squamous cell carcinomas from various sites of origin (positive in 18.1%-63.8%), ovarian and endometrium cancers (4.8%-56.2%), salivary gland tumors (4.8%-13.7%), bilio-pancreatic adenocarcinomas (20.0%-40.4%), and adenocarcinomas of the upper gastrointestinal tract (3.3%-12.5%). KLK7 positivity was linked to nodal metastasis (p = 0.0005), blood vessel infiltration (p = 0.0037), and lymph vessel infiltration (p < 0.0001) in colorectal adenocarcinoma, nodal metastasis in hepatocellular carcinoma (p = 0.0382), advanced pathological tumor stage in papillary thyroid cancer (p = 0.0132), and low grade of malignancy in a cohort of 719 squamous cell carcinomas from 11 different sites of origin (p < 0.0001). CONCLUSIONS: These data provide a comprehensive overview on KLK7 expression in normal and neoplastic human tissues. The prognostic relevance of KLK7 expression and the possible role of KLK7 as a drug target need to be further investigated.
Assuntos
Calicreínas , Neoplasias , Análise Serial de Tecidos , Humanos , Calicreínas/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Imuno-Histoquímica , MasculinoRESUMO
Objectives: Carcinoembryonic antigen (CEA) is a cell surface glycoprotein that represents a promising therapeutic target. Serum measurement of shedded CEA can be utilized for monitoring of cancer patients. Material and Methods: To evaluate the potential clinical significance of CEA expression in urothelial bladder neoplasms, CEA was analysed by immunohistochemistry in more than 2500 urothelial bladder carcinomas in a tissue microarray format. Results: CEA staining was largely absent in normal urothelial cells but was observed in 30.4% of urothelial bladder carcinomas including 406 (16.7%) with weak, 140 (5.8%) with moderate, and 192 (7.9%) with strong staining. CEA positivity occurred in 10.9% of 411 pTaG2 low-grade, 32.0% of 178 pTaG2 high-grade, and 43.0% of 93 pTaG3 tumours (p < 0.0001). In 1335 pT2-4 carcinomas, CEA positivity (34.1%) was lower than in pTaG3 tumours. Within pT2-4 carcinomas, CEA staining was unrelated to pT, pN, grade, L-status, V-status, overall survival, recurrence free survival, and cancer specific survival (p > 0.25). Conclusion: CEA increases markedly with grade progression in pTa tumours, and expression occurs in a significant fraction of pT2-4 urothelial bladder carcinomas. The high rate of CEA positivity in pT2-4 carcinomas offers the opportunity of using CEA serum measurement for monitoring the clinical course of these cancers. Moreover, CEA positive urothelial carcinomas are candidates for a treatment by targeted anti-CEA drugs.
RESUMO
The Melan-A (melanocyte antigen) protein, also termed 'melanoma antigen recognized by T cells 1' (MART-1) is a protein with unknown function whose expression is specific for the melanocyte lineage. Antibodies against Melan-A are thus used for identifying melanocytic tumors, but some Melan-A antibodies show an additional - diagnostically useful - cross-reactivity against an unspecified protein involved in corticosteroid hormone synthesis. To comprehensively compare the staining patterns of a specific and a cross-reactive Melan-A antibody in normal and neoplastic tissues, tissue microarrays containing 15,840 samples from 133 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. For the Melan-A-specific antibody 'Melan-A specific' (MSVA-900M), Melan-A positivity was seen in 96.0% of 25 benign nevi, 93.0% of 40 primary and 86.7% of 75 metastatic melanomas, 82.4% of 85 renal angiomyolipomas as well as 96.4% of 84 neurofibromas, 2.2% of 46 granular cell tumors, 1.0% of 104 schwannomas, and 1.1% of 87 leiomyosarcomas. The cross-reactive antibody 'Melan-A+' (MSVA-901M+) stained 98.1% of the tumors stained by 'Melan-A specific'. In addition, high positivity rates were seen in sex-cord-stroma tumors of the ovary (35.3%-100%) and the testis (86.7%) as well as for adrenocortical neoplasms (76.3%-83.0%). Only nine further tumor groups showed Melan-A+ staining, including five different categories of urothelial carcinomas. Our data provide a comprehensive overview on the staining patterns of specific and cross-reactive Melan-A antibodies. The data demonstrate that both antibodies are highly useful for their specific purpose. It is important for pathologists to distinguish these two Melan-A antibody subtypes for their daily work.
Assuntos
Reações Cruzadas , Imuno-Histoquímica , Antígeno MART-1 , Neoplasias , Humanos , Reações Cruzadas/imunologia , Antígeno MART-1/imunologia , Antígeno MART-1/análise , Imuno-Histoquímica/métodos , Neoplasias/imunologia , Neoplasias/diagnóstico , Neoplasias/patologia , Melanoma/imunologia , Melanoma/diagnóstico , Melanoma/patologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/análise , Análise Serial de Tecidos , FemininoRESUMO
EpCAM is expressed in many epithelial tumors and is used for the distinction of malignant mesotheliomas from adenocarcinomas and as a surrogate pan-epithelial marker. A tissue microarray containing 14,832 samples from 120 different tumor categories was analyzed by immunohistochemistry. EpCAM staining was compared with TROP2 and CKpan. EpCAM staining was detectable in 99 tumor categories. Among 78 epithelial tumor types, the EpCAM positivity rate was ≥90% in 60 categories-including adenocarcinomas, neuroendocrine neoplasms, and germ cell tumors. EpCAM staining was the lowest in hepatocellular carcinomas, adrenocortical tumors, renal cell neoplasms, and in poorly differentiated carcinomas. A comparison of EpCAM and CKpan staining identified a high concordance but EpCAM was higher in testicular seminomas and neuroendocrine neoplasms and CKpan in hepatocellular carcinomas, mesotheliomas, and poorly differentiated non-neuroendocrine tumors. A comparison of EpCAM and TROP2 revealed a higher rate of TROP2 positivity in squamous cell carcinomas and lower rates in many gastrointestinal adenocarcinomas, testicular germ cell tumors, neuroendocrine neoplasms, and renal cell tumors. These data confirm EpCAM as a surrogate epithelial marker for adenocarcinomas and its diagnostic utility for the distinction of malignant mesotheliomas. In comparison to CKpan and TROP2 antibodies, EpCAM staining is particularly common in seminomas and in neuroendocrine neoplasms.
RESUMO
Androgen receptor (AR) is a transcription factor expressed in various normal tissues and is a therapeutic target for prostate and possibly other cancers. A TMA containing 18,234 samples from 141 different tumor types/subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. AR positivity was found in 116 tumor types including 66 tumor types (46.8%) with ≥1 strongly positive tumor. Moderate/strong AR positivity was detected in testicular sex cord-stromal tumors (93.3-100%) and neoplasms of the prostate (79.3-98.7%), breast (25.0-75.5%), other gynecological tumors (0.9-100%), kidney (5.0-44.1%), and urinary bladder (5.4-24.2%). Low AR staining was associated with advanced tumor stage (pTa versus pT2-4; p < 0.0001) in urothelial carcinoma; advanced pT (p < 0.0001), high tumor grade (p < 0.0001), nodal metastasis (p < 0.0001), and reduced survival (p = 0.0024) in invasive breast carcinoma; high pT (p < 0.0001) and grade (p < 0.0001) in clear cell renal cell carcinoma (RCC); and high pT (p = 0.0055) as well as high grade (p < 0.05) in papillary RCC. AR staining was unrelated to histopathological/clinical features in 157 endometrial carcinomas and in 221 ovarian carcinomas. Our data suggest a limited role of AR immunohistochemistry for tumor distinction and a prognostic role in breast and clear cell RCC and highlight tumor entities that might benefit from AR-targeted therapy.
RESUMO
Trichorhinophalangeal syndrome 1 (TRPS1) is a nuclear protein highly expressed in breast epithelial cells. TRPS1 immunohistochemistry (IHC) has been suggested as a breast cancer marker. To determine the diagnostic and prognostic utility of TRPS1 IHC, tissue microarrays containing 19,201 samples from 152 different tumor types and subtypes were analyzed. GATA3 IHC was performed in a previous study. TRPS1 staining was seen in 86 of 152 tumor categories with 36 containing at least one strongly positive case. TRPS1 staining predominated in various types of breast carcinomas (51%-100%), soft tissue tumors (up to 100%), salivary gland tumors (up to 46%), squamous cell carcinomas (up to 35%), and gynecological cancers (up to 40%). TRPS1 positivity occurred in 1.8% of 1083 urothelial neoplasms. In invasive breast carcinoma of no special type, low TRPS1 expression was linked to high grade ( P = 0.0547), high pT ( P < 0.0001), nodal metastasis ( P = 0.0571), loss of estrogen receptor and progesterone receptor expression ( P < 0.0001 each), and triple-negative status ( P < 0.0001) but was unrelated to patient survival ( P = 0.8016). In squamous cell carcinomas from 11 different sites, low TRPS1 expression was unrelated to tumor phenotype. Positivity for both TRPS1 and GATA3 occurred in 47.4% to 100% of breast cancers, up to 30% of salivary gland tumors, and 29 (0.3%) of 9835 tumors from 134 other cancer entities. TRPS1 IHC has high utility for the identification of cancers of breast (or salivary gland) origin, especially in combination with GATA3. The virtual absence of TRPS1 positivity in urothelial neoplasms is useful for the distinction of GATA3-positive urothelial carcinoma from breast cancer.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas de Ligação a DNA , Imuno-Histoquímica , Proteínas Repressoras , Análise Serial de Tecidos , Humanos , Biomarcadores Tumorais/análise , Feminino , Proteínas Repressoras/análise , Proteínas de Ligação a DNA/análise , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/química , Neoplasias da Mama/diagnóstico , Fatores de Transcrição/análise , Fator de Transcrição GATA3/análise , Valor Preditivo dos Testes , Estimativa de Kaplan-Meier , PrognósticoRESUMO
The role of CD10 expression in colorectal cancer has been controversially discussed in the literature. Some data suggest a predictive capacity for lymph node and liver metastases, thus influencing overall survival (OS) and disease-free survival (DFS). This study aims to analyse the relationship between CD10 expression and overall survival (OS) in a European cohort. To determine the association of CD10 expression with tumour phenotype, molecular features, and prognosis, a tissue microarray of 1469 colorectal carcinomas was analysed using immunohistochemistry and was compared with matched clinicopathologic data. CD10 expression correlated with earlier tumour stages (p = 0.017) and left-sided colon cancer (p < 0.001). However, no correlation was found between CD10 expression and lymph node involvement (p = 0.711), tumour grading (p = 0.397), or overall survival (p = 0.562). Even in the subgroup analysis of tumour or nodal stage, CD10 did not affect overall survival, although it was significantly associated with p53 and nuclear ß-catenin expression (p = 0.013 and p < 0.001, respectively). CD10 expression correlates with earlier tumour stages, colon cancer location, and indicators of aggressive CRC subtypes. However, we can exclude CD10 as a relevant independent prognosticator for CRC.
RESUMO
BACKGROUND: A high level of PD-L1 expression is the most relevant predictive parameter for response to immune checkpoint inhibitor (CPI) therapy in urinary bladder cancer. Existing data on the relationship between PD-L1 expression and the natural course of disease are controversial and sparse. METHODS: To expand our understanding of the relationship between PD-L1 expression and parameters of cancer aggressiveness, PD-L1 was analyzed on tissue microarrays containing 2710 urothelial bladder carcinomas including 512 patients with follow-up data who underwent radical cystectomy and follow-up therapies in the pre-immune checkpoint inhibitor therapy era. RESULTS: Tumor cell positivity in ≥10% of cells were seen in 513 (20%) and an immune cell positivity occurred in 872 (34%) of 2566 interpretable cancers. PD-L1 positivity in tumor cells increased from pTaG2 low grade (0.9% positive) to pTaG3 high grade (4.1%; p = 0.0255) and was even higher in muscle-invasive (pT2-4) carcinomas (29.3%; p < 0.0001). However, within pT2-4 carcinomas, PD-L1 positivity was linked to low pT stage (p = 0.0028), pN0 (p < 0.0001), L0 status (p = 0.0005), and a better prognosis within 512 patients with cystectomy who never received CPIs (p = 0.0073 for tumor cells and p = 0.0086 for inflammatory cells). PD-L1 staining in inflammatory cells was significantly linked to PD-L1 staining in tumor cells (p < 0.0001) and both were linked to a positive p53 immunostaining (p < 0.0001). CONCLUSION: It cannot be fully excluded that the strong statistical link between PD-L1 status and favorable histological tumor features as well as better prognosis could influence the outcome of studies evaluating CPIs in muscle-invasive urothelial carcinoma.
Assuntos
Antígeno B7-H1 , Carcinoma de Células de Transição , Inibidores de Checkpoint Imunológico , Invasividade Neoplásica , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Antígeno B7-H1/análise , Antígeno B7-H1/biossíntese , Masculino , Feminino , Prognóstico , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/metabolismo , Idoso , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Idoso de 80 Anos ou mais , Estudos RetrospectivosRESUMO
Cadherin-17 (CDH17) is a membranous cell adhesion protein predominantly expressed in intestinal epithelial cells. CDH17 is therefore considered a possible diagnostic and therapeutic target. This study was to comprehensively determine the expression of CDH17 in cancer and to further assess the diagnostic utility of CDH17 immunohistochemistry (IHC). A tissue microarray containing 14,948 interpretable samples from 150 different tumor types and subtypes as well as 76 different normal tissue types was analyzed by IHC. In normal tissues, a membranous CDH17 staining was predominantly seen in the epithelium of the intestine and pancreatic excretory ducts. In tumors, 53 of 150 analyzed categories showed CDH17 positivity including 26 categories with at least one strongly positive case. CDH17 positivity was most common in epithelial and neuroendocrine colorectal neoplasms (50.0%-100%), other gastrointestinal adenocarcinomas (42.7%-61.6%), mucinous ovarian cancer (61.1%), pancreatic acinar cell carcinoma (28.6%), cervical adenocarcinoma (52.6%), bilio-pancreatic adenocarcinomas (40.5-69.8%), and other neuroendocrine neoplasms (5.6%-100%). OnIy 9.9% of 182 pulmonary adenocarcinomas were CDH17 positive. In colorectal adenocarcinomas, reduced CDH17 staining was linked to high pT (p = 0.0147), nodal metastasis (p = 0.0041), V1 (p = 0.0025), L1 (p = 0.0054), location in the right colon (p = 0.0033), and microsatellite instability (p < 0.0001). The CDH17 expression level was unrelated to tumor phenotype in gastric and pancreatic cancer. In summary, our comprehensive overview on CDH17 expression in human tumors identified various tumor entities that might often benefit from anti-CDH17 therapies and suggest utility of CDH17 IHC for the distinction of metastatic gastrointestinal or bilio-pancreatic adenocarcinomas (often positive) from primary pulmonary adenocarcinomas (mostly negative).
Assuntos
Adenocarcinoma , Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/patologia , Caderinas/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Pancreáticas/patologia , Imuno-Histoquímica , Biomarcadores TumoraisRESUMO
CONTEXT.: Steroidogenic acute regulatory (StAR) protein is a mitochondrial transport protein with a critical regulatory role for steroid hormone production. The tissue distribution of StAR expression is limited to few human normal tissues. OBJECTIVE.: To assess the diagnostic and prognostic value of StAR immunohistochemistry analysis. DESIGN.: A tissue microarray containing 19 202 samples from 152 different tumor types and subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULT.: StAR immunostaining occurred in 198 (1.2%) of the 17 135 analyzable tumors. StAR expression was observed in 27 of 152 tumor categories, 9 of which included at least 1 strongly positive case. The highest rate of StAR positivity occurred in Leydig cell tumors of the testis and the ovary (100%), steroid cell tumors of the ovary (100%), adrenocortical carcinomas (93%) and adenomas (87%), Sertoli-Leydig cell tumors (67%) and granulosa cell tumors of the ovary (56%), as well as seminomas (7%). Nineteen other tumor entities showed-a usually weak-StAR positivity in less than 6% of cases. A comparison with preexisting Melan-A (a melanocyte antigen) data revealed that StAR was more often positive in adrenocortical neoplasms and in Leydig cell tumors while StAR (but not Melan-A) was negative in Sertoli cell tumors. CONCLUSIONS.: Our data provide a comprehensive overview on the patterns of StAR immunostaining in human tumors and suggest a diagnostic utility of StAR immunohistochemistry for supporting a diagnosis of Leydig cell tumors or of normal or neoplastic adrenocortical tissue.
RESUMO
BACKGROUND: Prostein (P501S), also termed solute carrier family 45 member 3 (SLC45A3) is an androgen regulated protein which is preferentially expressed in prostate epithelial cells. Because of its frequent expression in prostate cancer, prostein was suggested a diagnostic prostate cancer marker. METHODS: In order to comprehensively assess the diagnostic utility of prostein immunohistochemistry, a tissue microarray containing 19,202 samples from 152 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS: Prostein immunostaining was typically cytoplasmic, granular and perinuclear. Prostein positivity was seen in 96.7% of 419 prostate cancers including 78.3% with strong staining. In 16,709 extra-prostatic tumors, prostein positivity was observed in 7.2% of all cases but only 0.3% had a strong staining. Overall, 50 different extra-prostatic tumor categories were prostein positive, 12 of which included at least one strongly positive case. Extra-prostatic tumors with highest rates of prostein positivity included different subtypes of salivary gland tumors (7.6-44.4%), neuroendocrine neoplasms (15.8-44.4%), adenocarcinomas of the gastrointestinal tract (7.3-14.8%), biliopancreatic adenocarcinomas (3.6-38.7%), hepatocellular carcinomas (8.1%), and adenocarcinomas of other organs (up to 21%). CONCLUSIONS: Our data provide a comprehensive overview on prostein expression in human cancers. Prostein is a highly sensitive prostate cancer marker occurring in > 96% of prostate cancers. Because prostein can also be expressed in various other tumor entities, classifying of a tumor mass as a prostate cancer should not be based on prostein positivity alone.
Assuntos
Adenocarcinoma , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Proteínas de Membrana , Adenocarcinoma/patologia , Imuno-Histoquímica , Biomarcadores TumoraisRESUMO
Glutamate decarboxylase 2 (GAD2) is the most important inhibitory neurotransmitter and plays a role in insulin-producing ß cells of pancreatic islets. The limitation of GAD2 expression to a few normal cell types makes GAD2 a potential immunohistochemical diagnostic marker. To evaluate the diagnostic utility of GAD2 immunohistochemistry, a tissue microarray containing 19,202 samples from 152 different tumor entities and 608 samples of 76 different normal tissue types was analyzed. In normal tissues, GAD2 staining was restricted to brain and pancreatic islet cells. GAD2 staining was seen in 20 (13.2%) of 152 tumor categories, including 5 (3.3%) tumor categories containing at least 1 strongly positive case. GAD2 immunostaining was most commonly seen in neuroendocrine carcinomas (58.3%) and neuroendocrine tumors (63.2%) of the pancreas, followed by granular cell tumors (37.0%) and neuroendocrine tumors of the lung (11.1%). GAD2 was only occasionally (<10% of cases) seen in 16 other tumor entities including paraganglioma, medullary thyroid carcinoma, and small cell neuroendocrine carcinoma of the urinary bladder. Data on GAD2 and progesterone receptor (PR) expression (from a previous study) were available for 95 pancreatic and 380 extrapancreatic neuroendocrine neoplasms. For determining a pancreatic origin of a neuroendocrine neoplasm, the sensitivity of GAD2 was 64.2% and specificity 96.3%, while the sensitivity of PR was 56.8% and specificity 92.6%. The combination of PR and GAD2 increased both sensitivity and specificity. GAD2 immunohistochemistry is a highly useful diagnostic tool for the identification of pancreatic origin in case of neuroendocrine neoplasms with unknown site of origin.
Assuntos
Carcinoma Neuroendócrino , Glutamato Descarboxilase , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/metabolismo , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Pâncreas/patologiaRESUMO
BACKGROUND: Uroplakin-1a (Upk1a) and uroplakin-1b (Upk1b) have recently been identified as diagnostic markers for the distinction of urothelial carcinomas from other solid tumor entities. Both proteins play an important role in the stabilization and strengthening of epithelial cells that line the bladder. METHODS: To evaluate the prognostic role of uroplakin expression in urothelial carcinomas, more than 2700 urothelial neoplasms were analyzed in a tissue microarray format by immunohistochemistry. To further assess the diagnostic role of uroplakin immunohistochemistry, results were compared with preexisting GATA3 data. RESULT: The fraction of Upk1a/Upk1b positive cases decreased slightly from pTaG2 low-grade (88% positive for Upk1a/87% positive for Upk1b) and pTaG2 high-grade (92%/89%) to pTaG3 (83%/88%; p > 0.05) and was lower in muscle-invasive (pT2-4) carcinomas (42%/64%; p < 0.0001/p < 0.0001 for pTa vs. pT2-4). Within pT2-4 carcinomas, high expression of Upk1a and Upk1b was linked to nodal metastasis and lymphatic vessel infiltration (p < 0.05) but unrelated to patient outcome. There were significant associations between Upk1a, Upk1b and GATA3 immunostaining (p < 0.0001 each), but 11% of GATA3 negative cancers were Upk1a/b positive and 8% of Upk1a/b negative cancers were GATA3 positive. Absence of GATA3/Upk1a/b staining was significantly linked to poor patient survival in the subgroup of 126 pT4 carcinomas (p = 0.0004) but not in pT2 and pT3 cancers. CONCLUSIONS: In summary, the results of our study demonstrate that Upk1a and/or Upk1b immunohistochemistry can complement GATA3 for the distinction of urothelial carcinomas. Furthermore, a progressive loss of Upk1a/b expression during stage progression and a prognostic role of the combination GATA3/Upk1a/Upk1b in pT4 carcinomas is evident.