Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Gene ; 871: 147428, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37068695

RESUMO

BACKGROUND: Since patients with cystic fibrosis with different Cystic Fibrosis Transmembrane Regulator (CFTR) genotypes present a wide response variability for modulator drugs such as Orkambi®, it is important to screen variants in candidate genes with an impact on precision and personalized medicine, such as Solute Carrier Family 26, member 9 (SLC26A9) gene. METHODS: Sanger sequencing for the exons and intron-exon boundary junctions of the SLC26A9 gene was employed in nine individuals with p.Phe508del homozygous genotype for the CFTR gene who were not under CFTR modulators therapy. The sequencing variants were evaluated by in silico prediction tools. The CFTR function was measured by cAMP-stimulated current (ΔIsc-eq-FSK) in polarized CFTR of human nasal epithelial cells cultured in micro-Ussing chambers with Orkambi®. RESULTS: We found 24 intronic variants, three in the coding region (missense variants - rs74146719 and rs16856462 and synonymous - rs33943971), and three in the three prime untranslated region (3' UTR) region in the SLC26A9 gene. Twenty variants were considered benign according to American College of Medical Genetics and Genomics guidelines, and ten were classified as uncertain significance. Although some variants had deleterious predictions or possible alterations in splicing, the majority of predictions were benign or neutral. When we analyzed the ΔIsc-eq-FSK response to Orkambi®, there were no significant differences within the genotypes and alleles for all 30 variants in the SLC26A9 gene. CONCLUSIONS: Among the nine individuals with p.Phe508del homozygous genotype for the CFTR gene, no pathogenic SLC26A9 variants were found, and we did not detect associations from the 30 SLC26A9 variants and the response to the Orkambi® in vitro.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Nucleotídeos , Transportadores de Sulfato/genética , Antiporters/genética
2.
Eur J Pharmacol ; 938: 175396, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36410419

RESUMO

The most prevalent cystic fibrosis (CF)-causing mutation - F508del - impairs the folding of CFTR protein, resulting in its defective trafficking and premature degradation. Small molecules termed correctors may rescue F508del-CFTR and therefore constitute promising pharmacotherapies acting on the fundamental cause of the disease. Here, we screened a collection of triazole compounds to identify novel F508del-CFTR correctors. The functional primary screen identified four hit compounds (LSO-18, LSO-24, LSO-28, and LSO-39), which were further validated and demonstrated to rescue F508del-CFTR processing, plasma membrane trafficking, and function. To interrogate their mechanism of action (MoA), we examined their additivity to the clinically approved drugs VX-661 and VX-445, low temperature, and genetic revertants of F508del-CFTR. Rescue of F508del-CFTR processing and function by LSO-18, LSO-24, and LSO-28, but not by LSO-39, was additive to VX-661, whereas LSO-28 and LSO-39, but not LSO-18 nor LSO-24, were additive to VX-445. All compounds under investigation demonstrated additive rescue of F508del-CFTR processing and function to low temperature as well as to rescue by genetic revertants G550E and 4RK. Nevertheless, none of these compounds was able to rescue processing nor function of DD/AA-CFTR, and LSO-39 (similarly to VX-661) exhibited no additivity to genetic revertant R1070W. From these findings, we suggest that LSO-39 (like VX-661) has a putative binding site at the NBD1:ICL4 interface, LSO-18 and LSO-24 seem to share the MoA with VX-445, and LSO-28 appears to act by a different MoA. Altogether, these findings represent an encouraging starting point to further exploit this chemical series for the development of novel CFTR correctors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzodioxóis/farmacologia , Fibrose Cística/tratamento farmacológico , Mutação , Triazóis/farmacologia , Triazóis/uso terapêutico
3.
J Cyst Fibros ; 21(4): 644-651, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690578

RESUMO

BACKGROUND: In cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation. METHODS: Genetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated. RESULTS: Organoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation. CONCLUSIONS: In vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Genótipo , Humanos , Mutação , Fenótipo
4.
ERJ Open Res ; 7(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34912883

RESUMO

Airway inflammation, mucus hyperproduction and epithelial remodelling are hallmarks of many chronic airway diseases, including asthma, COPD and cystic fibrosis. While several cytokines are dysregulated in these diseases, most studies focus on the response of airways to interleukin (IL)-4 and IL-13, which have been shown to induce mucus hyperproduction and shift the airway epithelium towards a hypersecretory phenotype. We hypothesised that other cytokines might induce the expression of chloride (Cl-) channels/transporters, and regulate epithelial differentiation and mucus production. To this end, fully differentiated human airway basal cells (BCi-NS1.1) were treated with cytokines identified as dysregulated in those diseases, namely IL-8, IL-1ß, IL-4, IL-17A, IL-10 and IL-22, and tumour necrosis factor-α. Our results show that the cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl- channel modulated by inflammation, in contrast to transmembrane protein 16A (TMEM16A), whose levels only changed with IL-4. Furthermore, we identified novel roles for IL-10 and IL-22 by influencing epithelial differentiation towards ciliated cells and away from pulmonary ionocytes. In contrast, IL-1ß and IL-4 reduced the number of ciliated cells while increasing club cells. Interestingly, while IL-1ß, IL-4 and IL-10 upregulated CFTR expression, IL-4 was the only cytokine that increased both its function and the number of CFTR-expressing club cells, suggesting that this cell type may be the main contributor for CFTR function. Additionally, all cytokines assessed increased mucus production through a differential upregulation of MUC5AC and MUC5B transcript levels. This study reveals a novel insight into differentiation resulting from the cross-talk of inflammatory mediators and airway epithelial cells, which is particularly relevant for chronic airway diseases.

5.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732694

RESUMO

Airway mucus obstruction is the main cause of morbidity in cystic fibrosis, a disease caused by mutations in the CFTR Cl- channel. Activation of non-CFTR Cl- channels such as TMEM16A can likely compensate for defective CFTR. However, TMEM16A was recently described as a key driver in mucus production/secretion. Here, we have examined whether indeed there is a causal relationship between TMEM16A and MUC5AC production, the main component of respiratory mucus. Our data show that TMEM16A and MUC5AC are inversely correlated during differentiation of human airway cells. Furthermore, we show for the first time that the IL-4-induced TMEM16A up-regulation is proliferation-dependent, which is supported by the correlation found between TMEM16A and Ki-67 proliferation marker during wound healing. Consistently, the notch signaling activator DLL4 increases MUC5AC levels without inducing changes neither in TMEM16A nor in Ki-67 expression. Moreover, TMEM16A inhibition decreased airway surface liquid height. Altogether, our findings demonstrate that up-regulation of TMEM16A and MUC5AC is only circumstantial under cell proliferation, but with no causal relationship between them. Thus, although essential for airway hydration, TMEM16A is not required for MUC5AC production.


Assuntos
Anoctamina-1/metabolismo , Mucina-5AC/biossíntese , Muco/metabolismo , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/metabolismo , Transporte Biológico , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Mucina-5AC/metabolismo , RNA Interferente Pequeno/metabolismo , Mucosa Respiratória/citologia , Transdução de Sinais
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1323-1331, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30716472

RESUMO

BACKGROUND: We analyzed the CFTR response to VX-809/VX-770 drugs in conditionally reprogrammed cells (CRC) of human nasal epithelium (HNE) from F508del/F508del patients based on SNP rs7512462 in the Solute Carrier Family 26, Member 9 (SLC26A9; MIM: 608481) gene. METHODS: The Isc-eq measurements of primary nasal epithelial cells from F508del/F508del patients (n = 12) for CFTR function were performed in micro Ussing chambers and compared with non-CF controls (n = 2). Data were analyzed according to the rs7512462 genotype which were determined by real-time PCR. RESULTS: The CRC-HNE cells from F508del/F508del patients evidenced high variability in the basal levels of CFTR function. Also, the rs7512462*C allele showed an increased basal CFTR function and higher responses to VX-809 + VX-770. The rs7512462*CC + CT genotypes together evidenced CFTR function levels of 14.89% relatively to wt/wt (rs7512462*CT alone-15.29%) i.e., almost double of rs7512462*TT (7.13%). Furthermore, sweat [Cl-] and body mass index of patients also evidenced an association with the rs7512462 genotype. CONCLUSION: The CFTR function can be performed in F508del/F508del patient-derived CRC-HNEs and its function and responses to VX-809 + VX-770 combination as well as clinical data, are all associated with the rs7512462 variant, which partially sheds light on the generally inter-individual phenotypic variability and in personalized responses to CFTR modulator drugs.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Antiporters/genética , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Quinolonas/farmacologia , Transportadores de Sulfato/genética , Alelos , Antiporters/metabolismo , Sequência de Bases , Índice de Massa Corporal , Estudos de Casos e Controles , Reprogramação Celular , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Cultura em Câmaras de Difusão , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica , Genótipo , Humanos , Modelos Biológicos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Deleção de Sequência , Transportadores de Sulfato/metabolismo , Suor/química
7.
Rev. paul. pediatr ; 34(4): 503-509, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-830739

RESUMO

Abstract Objective: To review the literature addressing the relationship of growth and nutritional parameters with pulmonary function in pediatric patients with cystic fibrosis. Data source: A collection of articles published in the last 15 years in English, Portuguese and Spanish was made by research in electronic databases - PubMed, Cochrane, Medline, Lilacs and Scielo - using the keywords cystic fibrosis, growth, nutrition, pulmonary function in varied combinations. Articles that addressed the long term association of growth and nutritional parameters, with an emphasis on growth, with pulmonary disease in cystic fibrosis, were included, and we excluded those that addressing only the relationship between nutritional parameters and cystic fibrosis and those in which the aim was to describe the disease. Data synthesis: Seven studies were included, with a total of 12,455 patients. Six studies reported relationship between growth parameters and lung function, including one study addressing the association of growth parameters, solely, with lung function, and all the seven studies reported relationship between nutritional parameters and lung function. Conclusions: The review suggests that the severity of the lung disease, determined by spirometry, is associated with body growth and nutritional status in cystic fibrosis. Thus, the intervention in these parameters can lead to the better prognosis and life expectancy for cystic fibrosis patients.


Resumo Objetivo: Revisar a literatura que aborda a relação entre os parâmetros de crescimento e nutricionais com a função pulmonar em pacientes pediátricos com fibrose cística. Fontes de dados: Dados foram coletados de artigos publicados nos últimos 15 anos em Inglês,Português e Espanhol através de pesquisa nas bases de dados eletrônicas - PubMed, Cochrane, Medline, Lilacs e Scielo - usando as palavras-chave: fibrose cística, crescimento, nutrição, função pulmonar utilizando combinações variadas. Os artigos que analisaram a associação de longo prazo entre parâmetros de crescimento e nutricionais, com ênfase em crescimento, com doença pulmonar em fibrose cística, foram incluídos, sendo excluídos aqueles que analisaram apenas a relação entre os parâmetros nutricionais e fibrose cística e aqueles em que o objetivo era descrever a doença. Síntese dos dados: Sete estudos foram incluídos, com um total de 12.455 pacientes. Seis relataram relação entre parâmetros de crescimento e função pulmonar, incluindo um estudo que analisou apenas a associação de parâmetros de crescimento com a função pulmonar, e todos os sete relataram associação entre parâmetros nutricionais e função pulmonar. Conclusões: A revisão sugere que a gravidade da doença pulmonar, determinada por espirometria, está associada com crescimento corporal e o estado nutricional em fibrose cística. Assim, a intervenção nesses parâmetros pode contribuir para um melhor prognóstico e expectativa de vida em pacientes com fibrose cística.


Assuntos
Humanos , Criança , Estado Nutricional , Fibrose Cística/fisiopatologia , Crescimento , Pulmão/fisiopatologia
8.
Rev Paul Pediatr ; 34(4): 503-509, 2016 Dec.
Artigo em Inglês, Português | MEDLINE | ID: mdl-27181343

RESUMO

OBJECTIVE: To review the literature addressing the relationship of growth and nutritional parameters with pulmonary function in pediatric patients with cystic fibrosis. DATA SOURCE: A collection of articles published in the last 15 years in English, Portuguese and Spanish was made by research in electronic databases - PubMed, Cochrane, Medline, Lilacs and Scielo - using the keywords cystic fibrosis, growth, nutrition, pulmonary function in varied combinations. Articles that addressed the long term association of growth and nutritional parameters, with an emphasis on growth, with pulmonary disease in cystic fibrosis, were included, and we excluded those that addressing only the relationship between nutritional parameters and cystic fibrosis and those in which the aim was to describe the disease. DATA SYNTHESIS: Seven studies were included, with a total of 12,455 patients. Six studies reported relationship between growth parameters and lung function, including one study addressing the association of growth parameters, solely, with lung function, and all the seven studies reported relationship between nutritional parameters and lung function. CONCLUSIONS: The review suggests that the severity of the lung disease, determined by spirometry, is associated with body growth and nutritional status in cystic fibrosis. Thus, the intervention in these parameters can lead to the better prognosis and life expectancy for cystic fibrosis patients.


Assuntos
Fibrose Cística/fisiopatologia , Crescimento , Pulmão/fisiopatologia , Estado Nutricional , Criança , Humanos
9.
Nat Commun ; 6: 6245, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651887

RESUMO

Purinergic P2X7 receptors (P2X7R) are fundamental to innate immune response. In macrophages, transient stimulation of P2X7R activates several transport mechanisms and induces the scrambling of phospholipids with subsequent membrane blebbing and apoptosis. These processes support phagocytosis and subsequent killing of phagocytosed bacteria. Here we demonstrate that the stimulation of P2X7 receptors activates anoctamin 6 (ANO6, TMEM16F), a protein that functions as Ca(2+) dependent phospholipid scramblase and Ca(2+)-activated Cl(-) channel. Inhibition or knockdown of ANO6 attenuates ATP-induced cell shrinkage, cell migration and phospholipid scrambling. In mouse macrophages, Ano6 produces large ion currents by stimulation of P2X7 receptors and contributes to ATP-induced membrane blebbing and apoptosis, which is largely reduced in macrophages from Ano6-/- mice. ANO6 supports bacterial phagocytosis and killing by mouse and human THP-1 macrophages. Our data demonstrate that anoctamin 6 is an essential component of the immune defense by macrophages.


Assuntos
Imunidade Inata , Macrófagos/imunologia , Proteínas de Transferência de Fosfolipídeos/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Anoctaminas , Apoptose/genética , Apoptose/imunologia , Cálcio/metabolismo , Movimento Celular , Tamanho Celular , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Ativação de Macrófagos , Macrófagos/citologia , Camundongos , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fagocitose/genética , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Proteínas de Transferência de Fosfolipídeos/deficiência , Proteínas de Transferência de Fosfolipídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais , Xenopus laevis
10.
PLoS One ; 7(10): e47708, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082198

RESUMO

BACKGROUND: Cystic Fibrosis (CF) is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR) gene encoding for a cAMP-regulated chloride (Cl(-)) channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases. METHODOLOGY/PRINCIPAL FINDINGS: To further establish measurement of CFTR function as a sensitive and robust biomarker for diagnosis and prognosis of CF, we herein assessed cholinergic and cAMP-CFTR-mediated Cl(-) secretion in 524 freshly excised rectal biopsies from 118 individuals, including patients with confirmed CF clinical diagnosis (n=51), individuals with clinical CF suspicion (n=49) and age-matched non-CF controls (n=18). Conclusive measurements were obtained for 96% of cases. Patients with "Classic CF", presenting earlier onset of symptoms, pancreatic insufficiency, severe lung disease and low Shwachman-Kulczycki scores were found to lack CFTR-mediated Cl(-) secretion (<5%). Individuals with milder CF disease presented residual CFTR-mediated Cl(-) secretion (10-57%) and non-CF controls show CFTR-mediated Cl(-) secretion ≥ 30-35% and data evidenced good correlations with various clinical parameters. Finally, comparison of these values with those in "CF suspicion" individuals allowed to confirm CF in 16/49 individuals (33%) and exclude it in 28/49 (57%). Statistical discriminant analyses showed that colonic measurements of CFTR-mediated Cl(-) secretion are the best discriminator among Classic/Non-Classic CF and non-CF groups. CONCLUSIONS/SIGNIFICANCE: Determination of CFTR-mediated Cl(-) secretion in rectal biopsies is demonstrated here to be a sensitive, reproducible and robust predictive biomarker for the diagnosis and prognosis of CF. The method also has very high potential for (pre-)clinical trials of CFTR-modulator therapies.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/diagnóstico , Fibrose Cística/metabolismo , Reto/metabolismo , Reto/patologia , 1-Metil-3-Isobutilxantina/farmacologia , Biomarcadores/metabolismo , Biópsia , Carbacol/farmacologia , Colforsina/farmacologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Genótipo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Prognóstico , Reto/efeitos dos fármacos , Resultado do Tratamento
11.
Exp Physiol ; 97(2): 184-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21908539

RESUMO

Endogenous Ca(2+)-activated Cl(-) currents (CaCCs) are abundant and present in very different cell types. Very good evidence has been provided that endogenous CaCC is produced by anoctamin 1 (Ano1) and Ano2. Insight into the physiological role of anoctamins has been provided for Ano1, Ano2 and Ano6; however, the physiological role of the other seven members of the anoctamin family remains obscure. Anoctamins 1 and 2 may operate as individual Ca(2+)-sensitive channel proteins or may require accessory subunits for complete function. We find that overexpressed Ano1 has properties resembling all those of endogenous CaCCs, although with some noticeable biophysical and regulatory differences when compared with endogenous channels. Apart from Ano1 and Ano2, expression of Ano6 also produces a Cl(-) conductance. Depending on the cellular background, Ano6 currents may have variable properties. Anoctamins 1 and 6 are frequent in epithelial cells, often coexpressed together with Ano8, Ano9 and Ano10. Most available data on anoctamins were obtained from mouse tissues and from cultured cells, which may not be representative of native human tissues.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Animais , Cálcio/metabolismo , Canais de Cloreto/biossíntese , Epitélio/metabolismo , Humanos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA