Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(2): 1082-1095, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29869198

RESUMO

Olfactory impairments and depressive behavior are commonly reported by individuals with Parkinson's disease (PD) being observed before motor symptoms. The mechanisms underlying these clinical manifestations are not fully elucidated. However, the imbalance in dopaminergic neurotransmission seems to play an important role in this context. In patients and animal models of PD, an increase in the dopaminergic interneurons of the glomerular layer in olfactory bulb (OB-gl) is observed, which may contribute to the olfactory impairment. In addition, neuronal imbalance in OB is related to depressive symptoms, as demonstrated by chemical olfactory bulbectomy. In view of that, we hypothesized that a reduction in the number or density of dopaminergic neurons present in OB could promote an olfactory improvement and, in contrast, would accentuate the depressive-like behaviors in the 6-hydroxydopamine (6-OHDA) model of PD. Therefore, we performed single or double injections of 6-OHDA within the substantia nigra pars compacta (SNpc) and/or in the OB-gl. We observed that, after 7 days, the group with nigral lesion exhibited olfactory impairment, as well as the group with the lesion in the OB-gl. However, the combination of the lesions prevented the occurrence of hyposmia. In relation to depressive-like behaviors, we observed that the SNpc injury promoted depressive-like behavior, being accentuated after a double injury. Our results demonstrated the importance of the dopaminergic neurons of the OB-gl in different non-motor features of PD, since the selective reduction of these periglomerular neurons was able to induce olfactory impairment and depressive-like behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Bulbo Olfatório/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Bulbo Olfatório/lesões , Bulbo Olfatório/patologia , Doença de Parkinson/patologia , Ratos Wistar , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
2.
Sleep Sci ; 12(3): 196-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890096

RESUMO

Excitotoxicity has been related to play a crucial role in Parkinson's disease (PD) pathogenesis. Pedunculopontine tegmental nucleus (PPT) represents one of the major sources of glutamatergic afferences to nigrostriatal pathway and putative reciprocal connectivity between these structures may exert a potential influence on rapid eye movement (REM) sleep control. Also, PPT could be overactive in PD, it seems that dopaminergic neurons are under abnormally high levels of glutamate and consequently might be more vulnerable to neurodegeneration. We decided to investigate the neuroprotective effect of riluzole administration, a N-methyl-D-aspartate (NMDA) receptor antagonist, in rats submitted simultaneously to nigrostrial rotenone and 24h of REM sleep deprivation (REMSD). Our findings showed that blocking NMDA glutamatergic receptors in the SNpc, after REMSD challenge, protected the dopaminergic neurons from rotenone lesion. Concerning rotenone-induced hypolocomotion, riluzole reversed this impairment in the control groups. Also, REMSD prevented the occurrence of rotenone-induced motor impairment as a result of dopaminergic supersensitivity. In addition, higher Fluoro Jade C (FJC) staining within the SNpc was associated with decreased cognitive performance observed in rotenone groups. Such effect was counteracted by riluzole suggesting the occurrence of an antiapoptotic effect. Moreover, riluzole did not rescue cognitive impairment impinged by rotenone, REMSD or their combination. These data indicated that reductions of excitotoxicity, by riluzole, partially protected dopamine neurons from neuronal death and appeared to be effective in relieve specific rotenone-induce motor disabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA