Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ann Bot ; 130(1): 65-75, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35533355

RESUMO

BACKGROUND AND AIMS: Canyon stream beds in the hyperarid Atacama Desert surprisingly harbour magnificent groves of endemic giant horsetail wetland plants, Equisetum xylochaetum. Our previous metagenomic study of eukaryotes closely associated with this plant indicated that the microbiome included prokaryotes that might likewise influence host success and environment. We explored this possibility by using the metagenomic sequence to characterize prokaryote taxa and functional genes present in the microbiome of E. xylochaetum sampled from remote sites differing in the degree of anthropogenic disturbance. We focused on biogeochemical functions known to be important in wetland ecosystems. METHODS: To ensure that analyses were conducted on microbes most closely associated with plants, we extracted DNA from well-washed plant organs whose microbial biofilms were revealed with scanning electron microscopy. To assess the benefits of longer sequences for taxonomic and gene classifications, results of analyses performed using contigs were compared with those obtained with unassembled reads. We employed methods widely used to estimate genomic coverage of single taxa for genomic analysis to infer relative abundances of taxa and functional genes. KEY RESULTS: Key functional bacterial genera (e.g. Hydrogenophaga, Sulfuritalea and Rhodoferax) inferred from taxonomic and functional gene analysis of contigs - but not unassembled reads - to occur on surfaces of (or within) plants at relatively high abundance (>50× genomic coverage) indicated roles in nitrogen, sulfur and other mineral cycling processes. Comparison between sites revealed impacts on biogeochemical functions, e.g. reduced levels of the nifH gene marker under disturbance. Vanadium nitrogenases were more important than molybdenum nitrogenases, indicated by both functional genes and taxa such as Rhodomicrobium and Phaeospirillum inferred from contigs but not unassembled reads. CONCLUSIONS: Our contig-based metagenomic analyses revealed that microbes performing key wetland biogeochemical functions occur as tightly adherent biofilms on the plant body, not just in water or sediments, and that disturbance reduces such functions, providing arguments for conservation efforts.


Assuntos
Equisetum , Microbiota , Metagenoma , Metagenômica/métodos , Microbiota/genética , Fixação de Nitrogênio , Plantas/genética
2.
J Phycol ; 57(1): 39-50, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33070358

RESUMO

Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free-living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.


Assuntos
Nostoc , Animais , Chile , Metagenômica , Microscopia , Nostoc/genética , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas
3.
Nat Commun ; 10(1): 516, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705269

RESUMO

Antimicrobial resistance is a global health crisis and few novel antimicrobials have been discovered in recent decades. Natural products, particularly from Streptomyces, are the source of most antimicrobials, yet discovery campaigns focusing on Streptomyces from the soil largely rediscover known compounds. Investigation of understudied and symbiotic sources has seen some success, yet no studies have systematically explored microbiomes for antimicrobials. Here we assess the distinct evolutionary lineages of Streptomyces from insect microbiomes as a source of new antimicrobials through large-scale isolations, bioactivity assays, genomics, metabolomics, and in vivo infection models. Insect-associated Streptomyces inhibit antimicrobial-resistant pathogens more than soil Streptomyces. Genomics and metabolomics reveal their diverse biosynthetic capabilities. Further, we describe cyphomycin, a new molecule active against multidrug resistant fungal pathogens. The evolutionary trajectories of Streptomyces from the insect microbiome influence their biosynthetic potential and ability to inhibit resistant pathogens, supporting the promise of this source in augmenting future antimicrobial discovery.


Assuntos
Produtos Biológicos/farmacologia , Insetos/microbiologia , Microbiota , Streptomyces/fisiologia , Animais , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Genômica , Metabolômica , Testes de Sensibilidade Microbiana
4.
J Phycol ; 51(3): 408-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26986658

RESUMO

Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.

5.
J Phycol ; 51(6): 1029-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26986998

RESUMO

A recent perspective article ably argued that fully sequencing more algal genomes would enable progress in diverse areas of fundamental and applied studies. More algal genomes would add resources needed to build well-supported phylogenies, improve our understanding of how horizontal gene transfer has influenced the evolution of algal genomes, provide useful ecological insights, and generate information essential to manipulating the genomes of industrially useful algae (J. Phycol. 51:1). We agree that more algal genomes would be quite beneficial, and also propose that more algal metagenomes would enable progress in both predictable and unforeseen directions.

6.
J Phycol ; 50(2): 280-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26988185

RESUMO

Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy-dispersive X-ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.

7.
PLoS One ; 6(11): e27909, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125637

RESUMO

Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.


Assuntos
Variação Genética , Genoma Bacteriano/genética , Photorhabdus/genética , Xenorhabdus/genética , Animais , Cromossomos Bacterianos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/fisiologia , Genômica/métodos , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Insetos/microbiologia , Insetos/parasitologia , Dados de Sequência Molecular , Nematoides/microbiologia , Nematoides/fisiologia , Photorhabdus/classificação , Photorhabdus/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose , Xenorhabdus/classificação , Xenorhabdus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA