Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 121(7): 1470-1479, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28145705

RESUMO

We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H-shift with X = 6, 7, 8, or 9) in the hydroperoxy acyl peroxy radicals, this H-shift is a reversible reaction and it scrambles between two peroxides, hydroperoxy acyl peroxy and peroxy peroxoic acid radicals. The forward reaction rate constants of the 1,X-OOH H-shift reactions are estimated to be above 103 s-1 with transition state theory corrected with Eckart quantum tunnelling correction. The ratio between the forward and reverse reaction rate constant of the 1,X-OOH H-shift reactions is around ∼105. Therefore, the equilibrium is pushed toward the production of peroxy peroxoic acid radicals. These very fast 1,X-OOH H-shift reactions are much faster than the reactions with NO and HO2 under most atmospheric conditions and must be included in the atmospheric models when hydroperoxy acyl peroxy radicals are oxidized. Finally, we have observed that H-shift reactions in a pentane acyl peroxy radical (C5-AOO) is fast (>1 s-1); this can have a significant influence on the possible formation of large acyl peroxy nitrate molecules.

2.
J Phys Chem A ; 120(20): 3588-95, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27163880

RESUMO

A concerted HO2 loss reaction from a peroxy radical (RO2), formed from the addition of O2 to an alkyl radical, has been proposed as a mechanism to form closed-shell products in the atmospheric oxidation of organic molecules. We investigate this reaction computationally with four progressively oxidized radicals. Potential energy surfaces of the O2 addition and HO2 loss reactions were calculated at ROHF-RCCSD(T)-F12a/VDZ-F12//ωB97xD/aug-cc-pVTZ level of theory and the master equation solver for multienergy well reactions (MESMER) was used to calculate Bartis-Widom phenomenological rate coefficients. The rate coefficients were also compared with the unimolecular rate coefficients of the HO2 loss reaction calculated with transition state theory at atmospheric temperature and pressure. On the basis of our calculations, the unimolecular concerted HO2 loss is unlikely to be a major pathway in the formation of highly oxidized closed-shell molecules in the atmosphere.

3.
J Phys Chem A ; 120(9): 1441-51, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26327174

RESUMO

The atmospheric oxidation of isoprene by the OH radical leads to the formation of several isomers of an unsaturated hydroxy hydroperoxide, ISOPOOH. Oxidation of ISOPOOH by OH produces epoxydiols, IEPOX, which have been shown to contribute mass to secondary organic aerosol (SOA). We present kinetic rate constant measurements for OH + ISOPOOH using synthetic standards of the two major isomers: (1,2)- and (4,3)-ISOPOOH. At 297 K, the total OH rate constant is 7.5 ± 1.2 × 10(-11) cm(3) molecule(-1) s(-1) for (1,2)-ISOPOOH and 1.18 ± 0.19 × 10(-10) cm(3) molecule(-1) s(-1) for (4,3)-ISOPOOH. Abstraction of the hydroperoxy hydrogen accounts for approximately 12% and 4% of the reactivity for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. The sum of all H-abstractions account for approximately 15% and 7% of the reactivity for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. The major product observed from both ISOPOOH isomers was IEPOX (cis-ß and trans-ß isomers), with a ∼ 2:1 preference for trans-ß IEPOX and similar total yields from each ISOPOOH isomer (∼ 70-80%). An IEPOX global production rate of more than 100 Tg C each year is estimated from this chemistry using a global 3D chemical transport model, similar to earlier estimates. Finally, following addition of OH to ISOPOOH, approximately 13% of the reactivity proceeds via addition of O2 at 297 K and 745 Torr. In the presence of NO, these peroxy radicals lead to formation of small carbonyl compounds. Under HO2 dominated chemistry, no products are observed from these channels. We suggest that the major products, highly oxygenated organic peroxides, are lost to the chamber walls. In the atmosphere, formation of these compounds may contribute to organic aerosol mass.

4.
J Phys Chem A ; 120(2): 266-75, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26669355

RESUMO

Using quantum mechanical calculations, we have investigated hydrogen shift (H-shift) reactions in peroxy radicals derived from the atmospheric oxidation of 1-pentene (CH2═CHCH2CH2CH3) and its monosubstituted derivatives. We investigate the peroxy radicals, HOCH2CH(OO)CR1HCH2CH3, HOCH2CH(OO)CH2CR1HCH3, and HOCH2CH(OO)CH2CH2CR1H2, where the substituent R1 is an alcoholic (OH), a hydroperoxy (OOH), or a methoxy (OCH3) group. For peroxy radicals with an OOH substituent, the H-shift reaction from the hydrogen atom on the OOH group to the OO group is extremely fast. We find that the rate constants of this type of H-shift reactions are greater than 10(3) s(-1) for both the forward and the reverse reactions. It leads to the formation of two different radical isomers that react through different reaction mechanisms and yield different products. These very fast H-shift reactions are much faster than the reactions with NO and HO2 under most atmospheric conditions and must be included in the atmospheric modeling of volatile organic compounds where hydroperoxy peroxy radicals are formed.

5.
J Phys Chem A ; 116(24): 5756-62, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22452246

RESUMO

Peroxy radicals formed by addition of OH and O(2) to the olefinic carbon atoms in methacrolein react with NO to form methacrolein hydroxy nitrate and hydroxyacetone. We observe that the ratio of these two compounds, however, unexpectedly decreases as the lifetime of the peroxy radical increases. We propose that this results from an isomerization involving the 1,4-H-shift of the aldehydic hydrogen atom to the peroxy group. The inferred rate (0.5 ± 0.3 s(-1) at T = 296 K) is consistent with estimates obtained from the potential energy surface determined by high level quantum calculations. The product, a hydroxy hydroperoxy carbonyl radical, decomposes rapidly, producing hydroxyacetone and re-forming OH. Simulations using a global chemical transport model suggest that most of the methacrolein hydroxy peroxy radicals formed in the atmosphere undergo isomerization and decomposition.


Assuntos
Acroleína/análogos & derivados , Atmosfera/química , Oxigênio/química , Peróxidos/química , Acroleína/química , Radicais Livres/química , Estrutura Molecular , Estereoisomerismo
6.
J Phys Chem A ; 116(24): 5763-8, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22452294

RESUMO

We investigate the oxidation of methacryloylperoxy nitrate (MPAN) and methacrylicperoxy acid (MPAA) by the hydroxyl radical (OH) theoretically, using both density functional theory [B3LYP] and explicitly correlated coupled cluster theory [CCSD(T)-F12]. These two compounds are produced following the abstraction of a hydrogen atom from methacrolein (MACR) by the OH radical. We use a RRKM master equation analysis to estimate that the oxidation of MPAN leads to formation of hydroxymethyl-methyl-α-lactone (HMML) in high yield. HMML production follows a low potential energy path from both MPAN and MPAA following addition of OH (via elimination of the NO(3) and OH from MPAN and MPAA, respectively). We suggest that the subsequent heterogeneous phase chemistry of HMML may be the route to formation of 2-methylglyceric acid, a common component of organic aerosol produced in the oxidation of methacrolein. Oxidation of acrolein, a photo-oxidation product from 1,3-butadiene, is found to follow a similar route generating hydroxymethyl-α-lactone (HML).


Assuntos
Acroleína/análogos & derivados , Atmosfera/química , Ácidos Glicéricos/síntese química , Lactonas/síntese química , Acroleína/química , Aerossóis/síntese química , Aerossóis/química , Ácidos Glicéricos/química , Radical Hidroxila/química , Lactonas/química , Estrutura Molecular , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA