Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Food Microbiol ; 109: 104148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309447

RESUMO

Despite increasing interest to investigate horizontal gene transfer as a leading cause of antibiotic resistance spread, the resistome is not only influenced by the influx and efflux of genes in different environments. Rather, the expression of existing genes under different stress conditions requires special attention. This study determined whether pre-adapting Lactiplantibacillus pentosus strains, isolated from Aloreña green table olives, to vegetable-based edible oils influence their phenotypic and genotypic responses to antibiotics. This has significant diet, food matrix, gut health, and food safety concerns. Pre-adapting L. pentosus strains to oils significantly changed their susceptibility profile to antibiotics. However, results generally differed among the three strains; although changes in the Minimum Inhibitory Concentration (MIC) of antibiotics occurred, it depended on the L. pentosus strain and the oil used for adaptation. The pre-adaptation of L. pentosus strains with olive, sunflower, argan and linseed oils induced gene expressions (e.g., rpsL, recA and uvrB) in several stress responses. Thus, to analyze this fact in-depth, transcriptional changes were reported in the selected potential probiotic L. pentosus CF2-10 adapted with olive or sunflower, rerouting its metabolic pathways to export toxic molecules through efflux pumps and ABC transporters. Pre-adaptation of some lactobacilli with olive or sunflower oils may represent a novel approach for manufacturing probiotic products with improved stability, functionality and robustness.


Assuntos
Lactobacillus pentosus , Olea , Probióticos , Microbiologia de Alimentos , Fermentação , Lactobacillus pentosus/metabolismo , Probióticos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Óleos
2.
Sci Total Environ ; 847: 157512, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872194

RESUMO

Antibiotic resistance genes (ARGs) that can encode resistance traits in bacteria are found across the environment. While it is often difficult to discern their origin, their prevalence and diversity depends on many factors, one of which is their exposure to potentially toxic elements (PTE, i.e., metals and metalloids) in soils. Here, we investigated how ambient ARGs and mobile genetic elements (MGEs) relate to the relative bioavailability of different PTEs (total versus exchangeable and carbonate-bound PTE) in rural and urban soils in northeast England. The average relative abundances of ARGs in rural sites varied over a 3-log range (7.24 × 10-7 to 1.0 × 10-4 genes/16S rRNA), and relative ARG abundances in urban sites varied by four orders of magnitude (1.75 × 10-6 to 2.85 × 10-2 genes/16S rRNA). While beta-lactam and aminoglycoside resistance genes dominated rural and urban sites, respectively, non-specific ARGs, also called multidrug-resistance genes, were significantly more abundant in urban sites (p < 0.05). Urban sites also had higher concentrations of total and exchangeable forms of PTE than rural sites, whereas rural sites were higher in carbonate-bound forms. Significant positive Spearman correlations between PTEs, ARGs and MGEs were apparent, especially with bioavailable PTE fractions and at urban sites. This study found significant positive correlations between ARGs and beryllium (Be), which has not previously been reported. Overall, our results show that PTE bioavailability is important in explaining the relative selection of ARGs in soil settings and must be considered in future co-selection and ARG exposure studies.


Assuntos
Metaloides , Solo , Aminoglicosídeos , Antibacterianos/farmacologia , Berílio , Disponibilidade Biológica , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Sequências Repetitivas Dispersas , RNA Ribossômico 16S , beta-Lactamas
3.
J Microbiol Methods ; 192: 106377, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798174

RESUMO

Toxicological batch assays are essential to assess a compound's acute effect on microorganisms. This methodology is frequently employed to evaluate the effect of contaminants in sensitive microbial communities from wastewater treatment plants (WWTPs), such as autotrophic nitrifying populations. However, despite nitrifying batch assays being commonly mentioned in the literature, their experimental design criteria are rarely reported or overlooked. Here, we found that slight deviations in culture preparations and conditions impacted bacterial community performance and could skew assay results. From pre-experimental trials and experience, we determined how mishandling and treatment of cultures could affect nitrification activity. While media and biomass preparations are needed to establish baseline conditions (e.g., biomass washing), we found extensive centrifugation selectively destabilised nitrification activities. Further, it is paramount that the air supply is adjusted to minimise nitrite build-up in the culture and maintain suitable aeration levels without sparging ammonia. DMSO and acetone up to 0.03% (v/v) were suitable organic solvents with minimal impact on nitrification activity. In the nitrification assays with allylthiourea (ATU), dilute cultures exhibited more significant inhibition than concentrated cultures. So there were biomass-related effects; however, these differences minimally impacted the EC50 values. Using different nutrient-media compositions had a minimal effect; however, switching mineral media for the toxicity test from the original cultivation media is not recommended because it reduced the original biomass nitrification capacity. Our results demonstrated that these factors substantially impact the performance of the nitrifying inoculum used in acute bioassays, and consequently, affect the response of AOB-NOB populations during the toxicant exposure. These are not highlighted in operation standards, and unfortunately, they can have significant consequential impacts on the determinations of toxicological endpoints. Moreover, the practical procedures tested here could support other authors in developing testing methodologies, adding quality checks in the experimental framework with minimal waste of time and resources.


Assuntos
Biodegradação Ambiental , Técnicas Microbiológicas/métodos , Nitrificação/fisiologia , Nitrobacter/metabolismo , Nitrosomonas/metabolismo , Purificação da Água/métodos , Biomassa , Reatores Biológicos/microbiologia , Solventes/farmacologia , Águas Residuárias/química , Águas Residuárias/microbiologia
4.
Front Microbiol ; 12: 747043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721347

RESUMO

In this study, we determined whether pre-adapting Lactiplantibacillus pentosus strains, isolated from Aloreña green table olives, to vegetable-based edible oils improved their robustness and functionality; this may have great importance on their stress response during fermentation, storage, and digestion. Pre-adapting the strains to the corresponding oils significantly increased their probiotic functionality (e.g., auto-aggregation, co-aggregation with pathogens, and mucin adhesion), although results depended on the strain and the oil used for pre-adaptation. As such, we selected olive-adapted (TO) L. pentosus AP2-16, which exhibited improved functionality, and subjected it to transcriptomic profiling with the aim to understand the molecular mechanisms involved in the adaptation and the increased functionality. Global transcriptomic analysis of oil-adapted (olive or almond) and non-adapted (control) L. pentosus AP2-16 realized that 3,259 genes were expressed, with 2,779 mapped to the reference database. Comparative transcriptomic analysis showed that 125 genes (olive vs. control) and 108 genes (olive vs. almond) became significantly differentially expressed. TO L. pentosus AP2-16 responded by rerouting its metabolic pathways to balance energy production and storage, cell growth and survivability, host interactions (glycoconjugates), and other physiological features. As such, the pre-adaptation of lactobacilli with olive oil switches their transcriptional network to regulate robustness and functionality, possibly representing a novel approach toward the design and manufacture of probiotic products with improved stability and functionality.

5.
Front Vet Sci ; 8: 755833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778436

RESUMO

Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8-84.0%) and intI2 as 82.4% (73.9-88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0-130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1-20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1-36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3-14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4-540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation.

6.
Environ Sci Pollut Res Int ; 28(43): 60968-60980, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165737

RESUMO

The impact of pharmaceutical and personal care products (PPCPs) on the performance of biological wastewater treatment plants (WWTPs) has been widely studied using whole-community approaches. These contaminants affect the capacity of microbial communities to transform nutrients; however, most have neither honed their examination on the nitrifying communities directly nor considered the impact on individual populations. In this study, six PPCPs commonly found in WWTPs, including a stimulant (caffeine), an antimicrobial agent (triclosan), an insect repellent ingredient (N,N-diethyl-m-toluamide (DEET)) and antibiotics (ampicillin, colistin and ofloxacin), were selected to assess their short-term toxic effect on enriched nitrifying cultures: Nitrosomonas sp. and Nitrobacter sp. The results showed that triclosan exhibited the greatest inhibition on nitrification with EC50 of 89.1 µg L-1. From the selected antibiotics, colistin significantly affected the overall nitrification with the lowest EC50 of 1 mg L-1, and a more pronounced inhibitory effect on ammonia-oxidizing bacteria (AOB) compared to nitrite-oxidizing bacteria (NOB). The EC50 of ampicillin and ofloxacin was 23.7 and 12.7 mg L-1, respectively. Additionally, experimental data suggested that nitrifying bacteria were insensitive to the presence of caffeine. In the case of DEET, moderate inhibition of nitrification (<40%) was observed at 10 mg L-1. These findings contribute to the understanding of the response of nitrifying communities in presence of PPCPs, which play an essential role in biological nitrification in WWTPs. Knowing specific community responses helps develop mitigation measures to improve system resilience.


Assuntos
Cosméticos , Preparações Farmacêuticas , Amônia , Reatores Biológicos , Nitrificação , Nitritos , Nitrobacter , Nitrosomonas , Oxirredução
7.
Environ Pollut ; 275: 116602, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582634

RESUMO

Many antibiotic resistance genes co-occur with resistance genes for transition metals, such as copper, zinc, or mercury. In some environments, a positive correlation between high metal concentration and high abundance of antibiotic resistance genes has been observed, suggesting co-selection due to metal presence. Of particular concern is the use of copper and zinc in animal husbandry, leading to potential co-selection for antibiotic resistance in animal gut microbiomes, slurry, manure, or amended soils. For antibiotics, predicted no effect concentrations have been derived from laboratory measured minimum inhibitory concentrations and some minimal selective concentrations have been investigated in environmental settings. However, minimal co-selection concentrations for metals are difficult to identify. Here, we use mathematical modelling to provide a general mechanistic framework to predict minimal co-selective concentrations for metals, given knowledge of their toxicity at different concentrations. We apply the method to copper (Cu), zinc (Zn), mercury (Hg), lead (Pb) and silver (Ag), predicting their minimum co-selective concentrations in mg/L (Cu: 5.5, Zn: 1.6, Hg: 0.0156, Pb: 21.5, Ag: 0.152). To exemplify use of these thresholds, we consider metal concentrations from slurry and slurry-amended soil from a UK dairy farm that uses copper and zinc as additives for feed and antimicrobial footbath: the slurry is predicted to be co-selective, but not the slurry-amended soil. This modelling framework could be used as the basis for defining standards to mitigate risks of antimicrobial resistance applicable to a wide range of environments, including manure, slurry and other waste streams.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Cobre/análise , Resistência Microbiana a Medicamentos/genética , Esterco , Metais Pesados/análise , Plasmídeos , Solo , Poluentes do Solo/análise
8.
Food Res Int ; 136: 109486, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846568

RESUMO

The use of shotgun metagenomic sequencing to understand ecological-level spread of microbes and their genes has provided new insights for the prevention, surveillance and control of microbial contaminants in the slaughterhouse environment. Here, microbial samples were collected from products and surrounding areas though a porcine slaughter process; shotgun metagenomic DNA-sequencing of these samples revealed a high community diversity within the porcine slaughterhouse and pork products, in zones originating from animal arrival through to the sale zones. Bacteria were more prevalent in the first zones, such as arrival- and anesthesia-zones, and DNA viruses were prevalent in the scorching-and-whip zone, animal products and sale zone. Data revealed the dominance of Firmicutes and Proteobacteria phyla followed by Actinobacteria, with a clear shift in the relative abundance of lactic acid bacteria (mainly Lactobacillus sp.) from early slaughtering steps to Proteobacteria and then to viruses suggesting site-specific community compositions occur in the slaughterhouse. Porcine-type-C oncovirus was the main virus found in slaughterhouse, which causes malignant diseases in animals and humans. As such, to guarantee food safety in a slaughterhouse, a better decipher of ecology and adaptation strategies of microbes becomes crucial. Analysis of functional genes further revealed high abundance of diverse genes associated with stress, especially in early zones (animal and environmental surfaces of arrival zone with 57,710 and 40,806 genes, respectively); SOS responsive genes represented the most prevalent, possibly associated with genomic changes responsible of biofilm formation, stringent response, heat shock, antimicrobial production and antibiotic response. The presence of several antibiotic resistance genes suggests horizontal gene transfer, thus increasing the likelihood for resistance selection in human pathogens. These findings are of great concern, with the suggestion to focus control measures and establish good disinfection strategies to avoid gene spread and microbial contaminants (bacteria and viruses) from the animal surface into the food chain and environment, which was achieved by applying HLE disinfectant after washing with detergent.


Assuntos
Desinfetantes , Produtos da Carne , Microbiota , Carne Vermelha , Matadouros , Animais , Simulação por Computador , Humanos , Suínos
9.
Minerals (Basel) ; 10(4): 348, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32724664

RESUMO

Medicinal earths are an important and yet, so far, little scientifically explored archaeological resource. They are almost always identified by their source locality. Our work over the last few years has focused on their chemical and mineralogical characterization and their testing as anti-bacterials. This paper presents the results of the mineralogical analysis and antibacterial testing of six medicinal earths, bole or Terra Sigillata (stamped earth) of unknown date and provenance in the Pharmacy Museum of the University of Basel. Only one of them, a red (Armenian?) 'bole', was found to be antibacterial against both Gram-positive and Gram-negative bacteria. A yellow powder of Terra Tripolitania was mildly antibacterial and against one pathogen only. We argue that medicinal earths are in a pivotal place to bridge the gap between currently dispersed pieces of information. This information relates to: (a) their nature, attributes, and applications as described in the texts of different periods, (b) the source of their clays and how best to locate them in the field today, and (c) the methods employed for their beneficiation, if known. We propose that work should be focused primarily onto those medicinal earths whose clay sources can be re-discovered, sampled and assessed. From then on, a parallel investigation should be initiated involving both earths and their natural clays (mineralogy at bulk and nano-sized levels, bio-geochemistry, microbiological testing). We argue that the combined study can shed light into the parameters driving antibacterial action in clays and assist in the elucidation of the mechanisms involved.

10.
Environ Sci Process Impacts ; 22(5): 1110-1124, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236187

RESUMO

Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Petróleo , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Farmacorresistência Bacteriana/genética , Hidrocarbonetos , Solo , Microbiologia do Solo
11.
Environ Geochem Health ; 42(4): 1057-1068, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31119572

RESUMO

The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of 'contamination' mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific 'stressors' that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.


Assuntos
Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Desenvolvimento Industrial , Metais Pesados/análise , Análise Multivariada , Rios , Escócia , Análise Espaço-Temporal
13.
Sci Rep ; 9(1): 10938, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358838

RESUMO

In silico analysis of Lactobacillus pentosus MP-10 plasmids (pLPE-1 to pLPE-5) suggests that plasmid-borne genes mediate the persistence of lactobacilli during olive fermentation and enhance their probiotic properties and their competitiveness in several ecological niches. The role of plasmids in the probiotic activities of L. pentosus MP-10 was investigated by plasmid-curing process which showed that plasmids contribute in increased metal tolerance and the biosequestration of several metals such as iron, aluminium, cobalt, copper, zinc, cadmium and mercury. Statistically significant differences in mucin adhesion were detected between the uncured and the cured L. pentosus MP-10, which possibly relied on a serine-rich adhesin (sraP) gene detected on the pLPE-2 plasmid. However, plasmid curing did not affect their tolerance to gastro-intestinal conditions, neither their growth ability under pre-determined conditions, nor auto-aggregation and pathogen co-aggregation were changed among the cured and uncured L. pentosus MP-10. These findings suggest that L. pentosus MP-10 plasmids play an important role in gastro-intestinal protection due to their attachment to mucin and, thus, preventing several diseases. Furthermore, L. pentosus MP-10 could be used as a bioquencher of metals in the gut, reducing the amount of these potentially toxic elements in humans and animals, food matrices, and environmental bioremediation.


Assuntos
Adesinas Bacterianas/genética , Fermentação , Lactobacillus pentosus/genética , Olea/microbiologia , Adesinas Bacterianas/metabolismo , Genes Bacterianos , Lactobacillus pentosus/efeitos dos fármacos , Lactobacillus pentosus/metabolismo , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Mucinas/metabolismo , Plasmídeos/genética , Probióticos
14.
Front Microbiol ; 9: 2099, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258416

RESUMO

We aimed to better understand resistome and virulome patterns on animal and process-area surfaces through a pig slaughterhouse to track possible contamination within the food production chain. Culture-dependent methods revealed high levels of microbial contamination, corresponding to mesophilic and pathogenic bacteria on both the animal and process-area surfaces mainly in the anesthesia (AA and AS) zone followed by "scorching and whip" (FA and FS) zone and also in the end products. To evaluate the potential risk of antibiotic resistance and virulence determinants, shotgun metagenomic DNA-sequencing of isolates from selected areas/products uncovered a high diversity and richness of antibiotic resistance genes (ARGs): 55-62 genes in the anesthesia area (AA and AS) and 35-40 in "animal-arrival zone" (MA and MS). The "scorching and whip" (FA and FS) area, however, exhibited lowered abundance of ARGs (1-6), indicating that the scalding and depilating process (an intermediate zone between "anesthesia" and "scorching and whip") significantly decreased bacterial load by 1-3 log10 but also diminished the resistome. The high prevalence of antibiotic-inactivating enzyme genes in the "animal-arrival zone" (60-65%) and "anesthesia" area (56%) were mainly represented by those for aminoglycoside (46-51%) and lincosamide (14-19%) resistance, which did not reflect selective pressures by antibiotics most commonly used in pig therapy-tetracyclines and beta-lactams. Contrary to ARGs, greater number of virulence resistance genes were detected after evisceration in some products such as kidney, which reflected the poor hygienic practices. More than 19 general virulence features-mainly adherence, secretion system, chemotaxis and motility, invasion and motility were detected in some products. However, immune evasion determinants were detected in almost all samples analyzed from the beginning of the process, with highest amounts found from the anesthesia area. We conclude that there are two main sources of contamination in a pig slaughterhouse: the microorganisms carried on the animals' hide, and those from the evisceration step. As such, focussing control measures, e.g., enhanced disinfection procedures, on these contamination-source areas may reduce risks to food safety and consumer health, since the antibiotic and virulence determinants may spread to end products and the environment; further, ARG and virulence traits can exacerbate pathogen treatments.

15.
Food Res Int ; 111: 58-66, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007721

RESUMO

We analyzed the adhesion capacity to mucus of 31 Lactobacillus pentosus strains isolated from naturally fermented Aloreña green table olives using an immobilized mucin model. On the basis of their adhesive capacity to mucin, three phenotypes were selected for cell-wall protein proteomic analysis to pinpoint proteins involved in the adhesion process: the highly adhesive L. pentosus CF1-43 N (73.49% of adhesion ability), the moderately adhesive L. pentosus CF1-37 N (49.56% of adhesion ability) and the poorly adhesive L. pentosus CF2-20P (32.79% of adhesion ability). The results revealed four moonlighting proteins over-produced in the highly adhesive L. pentosus CF1-43 N, which were under/not produced in the other two L. pentosus strains (CF1-37 N and CF2-20P). These proteins were involved in glycolytic pathway (phosphoglycerate mutase and glucosamine-6-phosphate deaminase), stress response (small heat shock protein) and transcription (transcription elongation factor GreA). Furthermore, the relative fold change in gene expression analysis showed significant up-regulation of the genes coding for these four moonlighting proteins in the highly adhesive L. pentosus CF1-43 N versus the poorly adhesive L. pentosus CF2-20P and also in response to mucin for 20 h which clearly indicate the significant role of these genes in the adhesion capacity of L. pentosus. Thus, these proteins could be used as biomarkers for mucus adhesion in L. pentosus. On the other hand, mucin exposure induced other probiotic effects in L. pentosus strains, enhancing their co-aggregation ability with pathogens and possible inactivation.


Assuntos
Microbiologia de Alimentos/métodos , Lactobacillus pentosus/metabolismo , Probióticos/metabolismo , Proteômica/métodos , Animais , Biomarcadores/metabolismo , Fermentação , Técnicas In Vitro , Mucinas/metabolismo , Suínos
16.
Sci Total Environ ; 635: 803-816, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710604

RESUMO

The Red River originates in the U.S., drains into Lake Winnipeg, and is a significant pathway for nutrients. We investigate its role as a source for pesticides, pharmaceuticals, per- and polyfluoroalkyl substances (PFASs), and microbes bearing antibiotic resistance genes (ARGs). We delineate agricultural, urban, and rural land-use for organic contaminants to determine the extent of chemical transboundary riverine fluxes, and characterize levels and trends of organic contaminants and ARGs between spring and fall 2014 and 2015. The herbicide atrazine peaked at over 500 ng/L (14-day time-weighted average) near the border, indicating that the U.S. represents the major source into Canada from the Red River. Neonicotinoid insecticides had relatively constant concentrations, suggesting more widespread agricultural use in both countries. Pesticide concentrations were greatest post-application in June and July. Mass loadings of pesticides over the sampling periods, from the river to Lake Winnipeg, ranged from approximately 800 kg of atrazine, to 120 kg of thiamethoxam and clothianidin, to 40 kg of imidacloprid. Exposure distributions for atrazine exceeded benchmark water quality guidelines for protection of aquatic life (0.2% probability of exceeding chronic benchmark) with no exceedances for neonicotinoids. Seven pharmaceuticals were detected, mostly at low ng/L levels downstream of the City of Winnipeg wastewater treatment plant. Carbamazepine, the only pharmaceutical detected consistently at all sites, contributed on average 20 kg each year into Lake Winnipeg. While minor inputs were observed all along the river, city inputs represented the greatest source of pharmaceuticals to the river. Both PFASs and ARGs were observed consistently and ubiquitously, indicative of an anthropogenically-influenced system with no indications of any single point-source signature. While transboundary flux from the U.S. was an important source of pesticides to the Red River, especially for atrazine, observed concentrations of all measured contaminants suggest that known aquatic toxicological risk is minimal.


Assuntos
Monitoramento Ambiental , Praguicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Atrazina , Cidades , Herbicidas/análise , Manitoba , Estações do Ano , Águas Residuárias , Qualidade da Água
17.
Environ Res ; 165: 133-139, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704774

RESUMO

We evaluated the efficacy of a new disinfectant product, HLE, to inhibit multiple species of planktonic and biofilm bacterial cultures. The HLE disinfectant comprised of EDTA, lactic acid and hydrogen peroxide, and our data indicated that the disinfectant had effective antimicrobial and anti-biofilm activity even at low concentrations (0.15% to 0.4% HLE, v/v). Furthermore, the HLE disinfectant destabilized biofilm structures eradicated them due to the synergistic effect of EDTA and both antimicrobials (lactic acid and hydrogen peroxide), as revealed by confocal laser scanning microscopy. Additionally, sub-inhibitory concentrations of HLE disinfectant, with EDTA as an efflux pump inhibitor, inhibited the expression of multidrug EfrAB, NorE and MexCD efflux pumps in both planktonic and biofilm cultures. This could provide an alternative way to disinfect surfaces to avoid spreading multi-drug resistant strains in the food chain and the environment by decreasing efflux pump expression and consequently reducing the antibiotic selective pressure caused by systemic antibiotics and disinfectant use.


Assuntos
Desinfetantes , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfetantes/normas , Testes de Sensibilidade Microbiana
18.
Sci Total Environ ; 628-629: 490-498, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453178

RESUMO

Environmental transport of contaminants that can influence the development of antibiotic resistance in bacteria is an important concern in the management of ecological and human health risks. Agricultural regions are locales where practices linked to food crop and livestock production can introduce contaminants that could alter the selective pressures for the development of antibiotic resistance in microbiota. This is important in regions where the use of animal manure or municipal biosolids as waste and/or fertilizer could influence selection for antibiotic resistance in pathogenic bacterial species. To investigate the environmental transport of contaminants that could lead to the development of antibiotic resistance in bacteria, a watershed with one of the highest levels of intensity of agricultural activity in Canada was studied; the Sumas River located 60 km east of Vancouver, British Columbia. This two-year assessment monitored four selected tetracycline resistance genes (tet(O), tet(M), tet(Q), tet(W)) and water quality parameters (temperature, specific conductivity, turbidity, suspended solids, nitrate, phosphate and chloride) at eight locations across the watershed. The tetracycline resistance genes (Tcr) abundances in the Sumas River network ranged between 1.47 × 102 and 3.49 × 104 copies/mL and ranged between 2.3 and 6.9 copies/mL in a control stream (located far from agricultural activities) for the duration of the study. Further, Tcr abundances that were detected in the wet season months ranged between 1.3 × 103 and 2.29 × 104 copies/mL compared with dry season months (ranging between 0.6 and 31.2 copies/mL). Highest transport rates between 1.67 × 1011 and 1.16 × 1012 copies/s were observed in November 2005 during periods of high rainfall. The study showed that elevated concentrations of antibiotic resistance genes in the order of 102-104 copies/mL can move through stream networks in an agricultural watershed but seasonal variations strongly influenced specific transport patterns of these genes.


Assuntos
Rios/microbiologia , Resistência a Tetraciclina/genética , Agricultura , Animais , Antibacterianos , Colúmbia Britânica , Genes Bacterianos , Estações do Ano , Tetraciclina
19.
Food Microbiol ; 72: 31-38, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29407403

RESUMO

Acidity often prevents the undesirable microbial colonization both in fermented foods and under gastric conditions. Thus, the acid resistance of Lactobacillus pentosus strains used as starter cultures and/or probiotics requires further understanding. This was investigated by means of comparative proteomic approach using three strains representing the phenotypes: resistant (AP2-15), intermediate (AP2-18) and sensitive (LP-1) to acidic conditions. Proteomic analysis of constitutive phenotypes revealed that the intrinsic resistance of L. pentosus is associated with the over-production of three principal proteins: 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase 2 (PGAM-d), elongation factor G and 50S ribosomal protein L10, and additionally on ATP synthase subunit beta and chaperone protein DnaK; they are associated with metabolic pathways of proteins and carbohydrates, energy production and stress responses. Suggested protein biomarkers for acid resistance in L. pentosus include elongation factor G and PGAM-d, both being abundantly found in the constitutive proteome of the resistant phenotype under standard and acidic conditions. Furthermore, L. pentosus strains pre-exposed to acids displayed enhanced probiotic function such as auto-aggregation ability via surface proteins. We conclude that pre-exposure of probiotic L. pentosus strains to acid may strategically enhance their performance as starter cultures and probiotics.


Assuntos
Ácidos/metabolismo , Proteínas de Bactérias/genética , Lactobacillus pentosus/genética , Lactobacillus pentosus/metabolismo , Probióticos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fermentação , Lactobacillus pentosus/química , Olea/microbiologia , Probióticos/metabolismo , Proteômica
20.
Front Microbiol ; 8: 891, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588563

RESUMO

Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria-host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria's adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA