Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(4): 5128-5135, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31885259

RESUMO

The adhesion force and contact angle of gold-capped silica Janus particles and plain silica particles at an air-water interface are studied via colloidal atomic force microscopy. Particles are attached to cantilevers at various orientations, and wetting properties of the gold surface are varied through modification with dodecanethiol. Thiol modification increases the hydrophobicity of the gold surface, thereby increasing the difference between the contact angles of the gold hemisphere and the silica hemisphere and, thus, increasing the degree of amphiphilicity of the Janus particle. Subsequently, the colloidal probe is pushed into a stationary bubble from the water phase followed by retraction back into the water phase. Adhesion force is found to be higher for Janus particles than isotropic silica particles, regardless of orientation of the anisotropic hemisphere. Particles with their polar half oriented toward the water and apolar half facing the air show an increase in adhesion force and contact angle as the degree of amphiphilicity of the particles increases. For particles of the reverse orientation, no significant difference is observed as wetting properties change. Both adhesion force and contact angle display an inverse relationship with a cap angle for particles with a higher degree of amphiphilicity. These results are of importance for using Janus particles to stabilize interfaces as well as for understanding the equilibrium height of Janus particles at the interface, which will impact capillary interactions and thus self-assembly.

2.
Nano Lett ; 18(4): 2564-2570, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29584938

RESUMO

Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA