RESUMO
Small-conductance, Ca2+ activated K+ channels (SK channels) are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1) blockade of SK2 channels before the training impaired fear memory, whereas, 2) blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced.
Assuntos
Medo/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Regulatory ß-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on ß-subunit function is largely unknown. Here we demonstrate that the human ß4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory ß-subunit. ß4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the ß4-subunit alone. Importantly, palmitoylated ß4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas ß4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and ß4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif ( REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, ß4-subunits. Our data reveal a novel mechanism by which palmitoylated ß4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels.
Assuntos
Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Lipoilação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Subunidades Proteicas/metabolismo , Motivos de Aminoácidos , Animais , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Subunidades Proteicas/genética , Transporte Proteico/fisiologiaRESUMO
Protein palmitoylation is rapidly emerging as an important determinant in the regulation of ion channels, including large conductance calcium-activated potassium (BK) channels. However, the enzymes that control channel palmitoylation are largely unknown. Indeed, although palmitoylation is the only reversible lipid modification of proteins, acyl thioesterases that control ion channel depalmitoylation have not been identified. Here, we demonstrate that palmitoylation of the intracellular S0-S1 loop of BK channels is controlled by two of the 23 mammalian palmitoyl-transferases, zDHHC22 and zDHHC23. Palmitoylation by these acyl transferases is essential for efficient cell surface expression of BK channels. In contrast, depalmitoylation is controlled by the cytosolic thioesterase APT1 (LYPLA1), but not APT2 (LYPLA2). In addition, we identify a splice variant of LYPLAL1, a homolog with â¼30% identity to APT1, that also controls BK channel depalmitoylation. Thus, both palmitoyl acyltransferases and acyl thioesterases display discrete substrate specificity for BK channels. Because depalmitoylated BK channels are retarded in the trans-Golgi network, reversible protein palmitoylation provides a critical checkpoint to regulate exit from the trans-Golgi network and thus control BK channel cell surface expression.
Assuntos
Aciltransferases/metabolismo , Regulação da Expressão Gênica/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Lipoilação/fisiologia , Tioléster Hidrolases/metabolismo , Rede trans-Golgi/metabolismo , Aciltransferases/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Tioléster Hidrolases/genética , Rede trans-Golgi/genéticaRESUMO
The anterior pituitary corticotroph is a major control point for the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the neuroendocrine response to stress. Although corticotrophs are known to be electrically excitable, ion channels controlling the electrical properties of corticotrophs are poorly understood. Here, we exploited a lentiviral transduction system to allow the unequivocal identification of live murine corticotrophs in culture. We demonstrate that corticotrophs display highly heterogeneous spontaneous action-potential firing patterns and their resting membrane potential is modulated by a background sodium conductance. Physiological concentrations of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) cause a depolarization of corticotrophs, leading to a sustained increase in action potential firing. A major component of the outward potassium conductance was mediated via intermediate conductance calcium-activated (SK4) potassium channels. Inhibition of SK4 channels with TRAM-34 resulted in an increase in corticotroph excitability and exaggerated CRH/AVP-stimulated ACTH secretion in vitro. In accordance with a physiological role for SK4 channels in vivo, restraint stress-induced plasma ACTH and corticosterone concentrations were significantly enhanced in gene-targeted mice lacking SK4 channels (Kcnn4(-/-)). In addition, Kcnn4(-/-) mutant mice displayed enhanced hypothalamic c-fos and nur77 mRNA expression following restraint, suggesting increased neuronal activation. Thus, stress hyperresponsiveness observed in Kcnn4(-/-) mice results from enhanced secretagogue-induced ACTH output from anterior pituitary corticotrophs and may also involve increased hypothalamic drive, thereby suggesting an important role for SK4 channels in HPA axis function.
Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Fisiológico/fisiologia , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/fisiologia , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Lentivirus/genética , Potenciais da Membrana , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Restrição Física/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução GenéticaRESUMO
S-palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by â¼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.
Assuntos
Membrana Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Processamento Alternativo/fisiologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/genética , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Mutação de Sentido Incorreto , Estrutura Terciária de ProteínaRESUMO
Trafficking of the pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels to the cell surface represents an important regulatory step in controlling BK channel function. Here, we identify multiple trafficking signals within the intracellular RCK1-RCK2 linker of the cytosolic C terminus of the channel that are required for efficient cell surface expression of the channel. In particular, an acidic cluster-like motif was essential for channel exit from the endoplasmic reticulum and subsequent cell surface expression. This motif could be transplanted onto a heterologous nonchannel protein to enhance cell surface expression by accelerating endoplasmic reticulum export. Importantly, we identified a human alternatively spliced BK channel variant, hSloDelta(579-664), in which these trafficking signals are excluded because of in-frame exon skipping. The hSloDelta(579-664) variant is expressed in multiple human tissues and cannot form functional channels at the cell surface even though it retains the putative RCK domains and downstream trafficking signals. Functionally, the hSloDelta(579-664) variant acts as a dominant negative subunit to suppress cell surface expression of BK channels. Thus alternative splicing of the intracellular RCK1-RCK2 linker plays a critical role in determining cell surface expression of BK channels by controlling the inclusion/exclusion of multiple trafficking motifs.
Assuntos
Processamento Alternativo , Membrana Celular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular , Clonagem Molecular , Éxons/genética , Regulação da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Deleção de SequênciaRESUMO
Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphorylation of the alpha-subunit effects changes in channel activity are unknown. Inhibition of BK channels by PKA depends on phosphorylation of only a single alpha-subunit in the channel tetramer containing an alternatively spliced insert (STREX) suggesting that phosphorylation results in major conformational rearrangements of the C terminus. Here, we define the mechanism of PKA inhibition of BK channels and demonstrate that this regulation is conditional on the palmitoylation status of the channel. We show that the cytosolic C terminus of the STREX BK channel uniquely interacts with the plasma membrane via palmitoylation of evolutionarily conserved cysteine residues in the STREX insert. PKA phosphorylation of the serine residue immediately upstream of the conserved palmitoylated cysteine residues within STREX dissociates the C terminus from the plasma membrane, inhibiting STREX channel activity. Abolition of STREX palmitoylation by site-directed mutagenesis or pharmacological inhibition of palmitoyl transferases prevents PKA-mediated inhibition of BK channels. Thus, palmitoylation gates BK channel regulation by PKA phosphorylation. Palmitoylation and phosphorylation are both dynamically regulated; thus, cross-talk between these 2 major posttranslational signaling cascades provides a mechanism for conditional regulation of BK channels. Interplay of these distinct signaling cascades has important implications for the dynamic regulation of BK channels and physiological homeostasis.
Assuntos
Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Membrana Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Homeostase/fisiologia , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Mutagênese Sítio-Dirigida/métodos , Fosforilação/fisiologia , Estrutura Terciária de Proteína/fisiologiaRESUMO
Previous studies have shown that tumor necrosis factor-alpha (TNF-alpha) induces neuroprotection against excitotoxic damage in primary cortical neurons via sustained nuclear factor-kappa B (NF-kappaB) activation. The transcription factor NF-kappaB can regulate the expression of small conductance calcium-activated potassium (K(Ca)) channels. These channels reduce neuronal excitability and as such may yield neuroprotection against neuronal overstimulation. In the present study we investigated whether TNF-alpha-mediated neuroprotective signaling is inducing changes in the expression of small conductance K(Ca) channels. Interestingly, the expression of K(Ca)2.2 channel was up-regulated by TNF-alpha treatment in a time-dependent manner whereas the expression of K(Ca)2.1 and K(Ca)2.3 channels was not altered. The increase in K(Ca)2.2 channel expression after TNF-alpha treatment was shown to be dependent on TNF-R2 and NF-kappaB activation. Furthermore, activation of small conductance K(Ca) channels by 6,7-dichloro-1H-indole-2,3-dione 3-oxime or cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine-induced neuroprotection against a glutamate challenge. Treatment with the small conductance K(Ca) channel blocker apamin or K(Ca)2.2 channel siRNA reverted the neuroprotective effect elicited by TNF-alpha. We conclude that treatment of primary cortical neurons with TNF-alpha leads to increased K(Ca)2.2 channel expression which renders neurons more resistant to excitotoxic cell death.
Assuntos
Ácido Glutâmico/toxicidade , NF-kappa B/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Sulfonas/farmacologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
In the hippocampus, BK channels are preferentially localized in presynaptic glutamatergic terminals including mossy fibers where they are thought to play an important role regulating excessive glutamate release during hyperactive states. Large conductance calcium-activated potassium channels (BK, MaxiK, Slo) have recently been implicated in the pathogenesis of genetic epilepsy. However, the role of BK channels in acquired mesial temporal lobe epilepsy (MTLE) remains unknown. Here we used immunohistochemistry, laser scanning confocal microscopy (LSCM), Western immunoblotting and RT-PCR to investigate the expression pattern of the alpha-pore-forming subunit of BK channels in the hippocampus and cortex of chronically epileptic rats obtained by the pilocarpine model of MTLE. All epileptic rats experiencing recurrent spontaneous seizures exhibited a significant down-regulation of BK channel immunostaining in the mossy fibers at the hilus and stratum lucidum of the CA3 area. Quantitative analysis of immunofluorescence signals by LSCM revealed a significant 47% reduction in BK channel immunofluorescent signals in epileptic rats when compared to age-matched non-epileptic control rats. These data correlate with a similar reduction in BK channel protein levels and transcripts in the cortex and hippocampus. Our data indicate a seizure-related down-regulation of BK channels in chronically epileptic rats. Further functional assays are necessary to determine whether altered BK channel expression is an acquired channelopathy or a compensatory mechanism affecting the network excitability in MTLE. Moreover, seizure-mediated BK down-regulation may disturb neuronal excitability and presynaptic control at glutamatergic terminals triggering exaggerated glutamate release and seizures.
Assuntos
Regulação para Baixo/fisiologia , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/metabolismo , Animais , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Doença Crônica , Convulsivantes/farmacologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/fisiopatologia , Imunofluorescência , Predisposição Genética para Doença/genética , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/metabolismo , Agonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Pilocarpina , Potássio/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Proteína Vesicular 1 de Transporte de Glutamato/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismoRESUMO
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing ACTH from the anterior pituitary gland and glucocorticoids from the adrenal cortex. Stress also activates the sympathetic nervous system, evoking adrenaline release from the adrenal medulla. Large-conductance calcium- and voltage-activated potassium (BK) channels have been implicated in regulation of cellular excitability in these systems. Here, we examine the functional role of BK channels in HPA axis regulation in vivo using female mice genetically deficient (BK(-/-)) for the pore-forming subunits of BK channels. BK(-/-) phenotype in the HPA was confirmed by immunohistochemistry, Western blot analysis, and corticotrope patch-clamp recording. Restraint stress-induced plasma concentrations of ACTH and corticosterone were significantly blunted in BK(-/-) mice compared with wild type (WT) controls. This stress hyporesponsiveness was associated with reduced activation of hypothalamic paraventricular nucleus (PVN) neurons. Basal expression of CRH, but not arginine vasopressin mRNA in the PVN was significantly lower in BK(-/-) mice compared with WT controls. Total anterior pituitary ACTH peptide content, but not proopiomelanocortin mRNA expression or corticotrope number, was significantly reduced in BK(-/-) mice compared with WT. However, anterior pituitary corticotropes from BK(-/-) mice fully supported ACTH output, releasing a significantly greater proportion of stored ACTH in response to secretagogue in vitro compared with WT. These results support an important role for BK channels in both the neural circuitry and endocrine output of the HPA axis and indicate that the stress hyporesponsiveness in BK(-/-) mice primarily results from reduced activation of hypothalamic PVN neurosecretory neurons.
Assuntos
Sistema Hipotálamo-Hipofisário/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Sistema Hipófise-Suprarrenal/fisiopatologia , Restrição Física/fisiologia , Estresse Fisiológico/fisiopatologia , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , RNA Mensageiro/metabolismo , Restrição Física/psicologia , Estresse Fisiológico/sangue , Estresse Fisiológico/genéticaRESUMO
Autoreactive memory T lymphocytes are implicated in the pathogenesis of autoimmune diseases. Here we demonstrate that disease-associated autoreactive T cells from patients with type-1 diabetes mellitus or rheumatoid arthritis (RA) are mainly CD4+ CCR7- CD45RA- effector memory T cells (T(EM) cells) with elevated Kv1.3 potassium channel expression. In contrast, T cells with other antigen specificities from these patients, or autoreactive T cells from healthy individuals and disease controls, express low levels of Kv1.3 and are predominantly naïve or central-memory (T(CM)) cells. In T(EM) cells, Kv1.3 traffics to the immunological synapse during antigen presentation where it colocalizes with Kvbeta2, SAP97, ZIP, p56(lck), and CD4. Although Kv1.3 inhibitors [ShK(L5)-amide (SL5) and PAP1] do not prevent immunological synapse formation, they suppress Ca2+-signaling, cytokine production, and proliferation of autoantigen-specific T(EM) cells at pharmacologically relevant concentrations while sparing other classes of T cells. Kv1.3 inhibitors ameliorate pristane-induced arthritis in rats and reduce the incidence of experimental autoimmune diabetes in diabetes-prone (DP-BB/W) rats. Repeated dosing with Kv1.3 inhibitors in rats has not revealed systemic toxicity. Further development of Kv1.3 blockers for autoimmune disease therapy is warranted.
Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Canal de Potássio Kv1.3/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Eletrofisiologia , Feminino , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Proteínas Associadas a Pancreatite , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Receptores CCR7 , Receptores de Quimiocinas/metabolismo , Linfócitos T/patologiaRESUMO
Calcium-activated potassium (BK) channels play a central role in regulating multiple physiological processes, from the control of blood flow to neuronal excitability. Coordinated regulation of BK channel activity by changes in actin cytoskeleton dynamics has been implicated in several of these processes and related disease states such as epilepsy and stroke. However, how BK channels interact with the actin cytoskeleton is essentially unknown. Here we demonstrate noncanonical Src homology domain 3 (SH3) binding site motifs in the intracellular C terminus of the BK channel pore-forming alpha-subunit that are conserved from fish to humans. These noncanonical motifs target multiple SH3 domain cellular signaling proteins to BK channels, including the SH3 adapter protein cortactin (EMS1). We demonstrate that cortactin provides a molecular bridge between BK channels and the cortical actin cytoskeleton in cells. Disruption of the SH3-mediated interaction prevents the regulation of BK channel activity controlled by changes in actin cytoskeletal dynamics. Targeting of cortactin to BK channels via a novel, noncanonical SH3 domain binding motif has important implications for the coordination of BK channel function in normal physiology and disease.
Assuntos
Actinas/metabolismo , Cortactina/metabolismo , Citoesqueleto/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Domínios de Homologia de src/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cortactina/química , Hipocampo/citologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Camundongos , Neurônios/metabolismo , Ligação ProteicaRESUMO
BACKGROUND: Large conductance calcium- and voltage activated potassium (BK) channels are important determinants of neuronal excitability through effects on action potential duration, frequency and synaptic efficacy. The pore- forming subunits are encoded by a single gene, KCNMA1, which undergoes extensive alternative pre mRNA splicing. Different splice variants can confer distinct properties on BK channels. For example, insertion of the 58 amino acid stress-regulated exon (STREX) insert, that is conserved throughout vertebrate evolution, encodes channels with distinct calcium sensitivity and regulation by diverse signalling pathways compared to the insertless (ZERO) variant. Thus, expression of distinct splice variants may allow cells to differentially shape their electrical properties during development. However, whether differential splicing of BK channel variants occurs during development of the mammalian CNS has not been examined. RESULTS: Using quantitative real-time polymerase chain reaction (RT-PCR) Taqmantrade mark assays, we demonstrate that total BK channel transcripts are up regulated throughout the murine CNS during embryonic and postnatal development with regional variation in transcript levels. This upregulation is associated with a decrease in STREX variant mRNA expression and an upregulation in ZERO variant expression. CONCLUSION: As BK channel splice variants encode channels with distinct functional properties the switch in splicing from the STREX phenotype to ZERO phenotype during embryonic and postnatal CNS development may provide a mechanism to allow BK channels to control distinct functions at different times of mammalian brain development.
Assuntos
Processamento Alternativo , Encéfalo/crescimento & desenvolvimento , Regulação para Baixo/genética , Éxons/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Medula Espinal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Medula Espinal/metabolismoRESUMO
Clinical treatment of neuropathic pain can be achieved with a number of different drugs, some of which interact with all members of the voltage-gated sodium channel (NaV1) family. However, block of central nervous system and cardiac NaV1 channels can cause dose-limiting side effects, preventing many patients from achieving adequate pain relief. Expression of the tetrodotoxin-resistant NaV1.8 subtype is restricted to small-diameter sensory neurons, and several lines of evidence indicate a role for NaV1.8 in pain processing. Given these features, NaV1.8 subtype-selective blockers are predicted to be efficacious in the treatment of neuropathic pain and to be associated with fewer adverse effects than currently available therapies. To facilitate the identification of NaV1.8-specific inhibitors, we stably expressed the human NaV1.8 channel together with the auxiliary human beta1 subunit (NaV beta1) in human embryonic kidney 293 cells. Heterologously expressed human NaV1.8/NaV beta1 channels display biophysical properties that are similar to those of tetrodotoxin-resistant channels present in mouse dorsal root ganglion neurons. A membrane potential, fluorescence resonance energy transfer-based functional assay on a fluorometric imaging plate reader (FLIPR-Tetra, Molecular Devices, Sunnyvale, CA) platform has been established. This highcapacity assay is sensitive to known state-dependent NaV1 modulators and can be used to identify novel and selective NaV1.8 inhibitors.
Assuntos
Potenciais da Membrana/fisiologia , Neurônios Aferentes/fisiologia , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Primers do DNA , Eletrofisiologia/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Rim , Modelos Moleculares , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.8 , Fragmentos de Peptídeos/imunologia , Conformação Proteica , Coelhos , Canais de Sódio/genéticaRESUMO
The pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are encoded by a single gene that undergoes extensive alternative pre-mRNA splicing. However, the extent to which differential exon usage at a single site of splicing may confer functionally distinct properties on BK channels is largely unknown. Here we demonstrated that alternative splicing at site of splicing C2 in the mouse BK channel C terminus generates five distinct splice variants: ZERO, e20, e21(STREX), e22, and a novel variant deltae23. Splice variants display distinct patterns of tissue distribution with e21(STREX) expressed at the highest levels in adult endocrine tissues and e22 at embryonic stages of mouse development. deltae23 is not functionally expressed at the cell surface and acts as a dominant negative of cell surface expression by trapping other BK channel splice variant alpha-subunits in the endoplasmic reticulum and perinuclear compartments. Splice variants display a range of biophysical properties. e21(STREX) and e22 variants display a significant left shift (>20 mV at 1 microM [Ca2+]i) in half-maximal voltage of activation compared with ZERO and e20 as well as considerably slower rates of deactivation. Splice variants are differentially sensitive to phosphorylation by endogenous cAMP-dependent protein kinase; ZERO, e20, and e22 variants are all activated, whereas e21 (STREX) is the only variant that is inhibited. Thus alternative pre-mRNA splicing from a single site of splicing provides a mechanism to generate a physiologically diverse complement of BK channel alpha-subunits that differ dramatically in their tissue distribution, trafficking, and regulation.
Assuntos
Processamento Alternativo , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Biofísica , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Evolução Molecular , Éxons , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Íntrons , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Fosforilação , Testes de Precipitina , Subunidades Proteicas/química , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Distribuição TecidualRESUMO
The role of ion channels in cell physiology is regulated by processes occurring after protein biosynthesis, which are critical for both channel function and targeting of channels to appropriate cell compartments. Here we apply biochemical and electrophysiological methods to investigate the role of the high-conductance, calcium-activated potassium (Maxi-K) channel C-terminal domain in channel tetramerization, association with the beta1 subunit, trafficking of the channel complex to the cell surface, and channel function. No evidence for channel tetramerization, cell surface expression, or function was observed with Maxi-K(1)(-)(323), a construct truncated three residues after the S(6) transmembrane domain. However, Maxi-K(1)(-)(343) and Maxi-K(1)(-)(441) are able to form tetramers and to associate with the beta1 subunit. Maxi-K(1)(-)(343)-beta1 and Maxi-K(1)(-)(441)-beta1 complexes are efficiently targeted to the cell surface and cannot be pharmacologically distinguished from full-length channels in binding experiments but do not form functional channels. Maxi-K(1)(-)(651) forms tetramers and associates with beta1; however, the complex is not present at the cell surface, but is retained intracellularly. Maxi-K(1)(-)(651) surface expression and channel function can be fully rescued after coexpression with its C-terminal complement, Maxi-K(652)(-)(1113). However coexpression of Maxi-K(1)(-)(343) and Maxi-K(1)(-)(441) with their respective C-terminal complements did not rescue channel function. Together, these data demonstrate that the domain(s) in the Maxi-K channel necessary for formation of tetramers, coassembly with the beta1 subunit, and cell surface expression resides within the S(0)-S(6) linker domain of the protein, and that structural constraints within the gating ring in the C-terminal region can regulate trafficking and function of constructs truncated in this region.
Assuntos
Fragmentos de Peptídeos/química , Canais de Potássio Cálcio-Ativados/química , Ácido Aspártico/genética , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Radioisótopos do Iodo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta , Monoiodotirosina/genética , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Fenilalanina/genética , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/biossíntese , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Transfecção , Tirosina/genéticaRESUMO
The SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa band corresponding to the previously reported SK2 protein (SK2-S) and a novel 78-kDa form. Complementary DNA clones from brain and Western blots probed with an antibody specific for the longer form, SK2-L, identified the larger molecular weight isoform as an N-terminally extended SK2 protein. The N-terminal extension of SK2-L is cysteine-rich and mediates disulfide bond formation between SK2-L subunits or with heterologous proteins. Immunohistochemistry revealed that in brain SK2-L and SK2-S are expressed in similar but not identical patterns. Heterologous expression of SK2-L results in functional homomeric channels with Ca2+ sensitivity similar to that of SK2-S, consistent with their shared core and intracellular C-terminal domains. In contrast to the diffuse, uniform surface distribution of SK2-S, SK2-L channels cluster into sharply defined, distinct puncta suggesting that the extended cysteine-rich N-terminal domain mediates this process. Immunoprecipitations from transfected cells and mouse brain demonstrate that SK2-L co-assembles with the other SK subunits. Taken together, the results show that the SK2 gene encodes two subunit proteins and suggest that native SK2-L subunits may preferentially partition into heteromeric channel complexes with other SK subunits.
Assuntos
Encéfalo/metabolismo , Canais de Potássio Cálcio-Ativados/química , Canais de Potássio Cálcio-Ativados/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Células COS , Cálcio/metabolismo , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Cricetinae , Cisteína/química , DNA Complementar/metabolismo , Dissulfetos , Relação Dose-Resposta a Droga , Eletrofisiologia , Hipocampo/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , TransfecçãoRESUMO
Large conductance voltage- and calcium-activated potassium (BK(Ca)) channels are important signaling molecules that are regulated by multiple protein kinases and protein phosphatases at multiple sites. The pore-forming alpha-subunits, derived from a single gene that undergoes extensive alternative pre-mRNA splicing, assemble as tetramers. Although consensus phosphorylation sites have been identified within the C-terminal domain of alpha-subunits, it is not known whether phosphorylation of all or single alpha-subunits within the tetramer is required for functional regulation of the channel. Here, we have exploited a strategy to study single-ion channels in which both the alpha-subunit splice-variant composition is defined and the number of consensus phosphorylation sites available within each tetramer is known. We have used this approach to demonstrate that cAMP-dependent protein kinase (PKA) phosphorylation of the conserved C-terminal PKA consensus site (S899) in all four alpha-subunits is required for channel activation. In contrast, inhibition of BK(Ca) channel activity requires phosphorylation of only a single alpha-subunit at a splice insert (STREX)-specific PKA consensus site (S4(STREX)). Thus, distinct modes of BK(Ca) channel regulation by PKA phosphorylation exist: an "all-or-nothing" rule for activation and a "single-subunit" rule for inhibition. This essentially digital regulation has important implications for the combinatorial and conditional regulation of BK(Ca) channels by reversible protein phosphorylation.