Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Structure ; 32(4): 411-423.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325368

RESUMO

Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.


Assuntos
Heme , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Microscopia Crioeletrônica , Heme/química , Proteínas de Membrana/química , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Anticorpos/metabolismo , Proteínas de Bactérias/química
2.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577460

RESUMO

Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.

3.
Nature ; 607(7918): 374-380, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768507

RESUMO

Peroxisomes are ubiquitous organelles that house various metabolic reactions and are essential for human health1-4. Luminal peroxisomal proteins are imported from the cytosol by mobile receptors, which then recycle back to the cytosol by a poorly understood process1-4. Recycling requires receptor modification by a membrane-embedded ubiquitin ligase complex comprising three RING finger domain-containing proteins (Pex2, Pex10 and Pex12)5,6. Here we report a cryo-electron microscopy structure of the ligase complex, which together with biochemical and in vivo experiments reveals its function as a retrotranslocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that co-assemble into an open channel. The three ring finger domains form a cytosolic tower, with ring finger 2 (RF2) positioned above the channel pore. We propose that the N terminus of a recycling receptor is inserted from the peroxisomal lumen into the pore and monoubiquitylated by RF2 to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitylated by the concerted action of RF10 and RF12 and degraded. This polyubiquitylation pathway also maintains the homeostasis of other peroxisomal import factors. Our results clarify a crucial step during peroxisomal protein import and reveal why mutations in the ligase complex cause human disease.


Assuntos
Microscopia Crioeletrônica , Peroxissomos , Complexos Ubiquitina-Proteína Ligase , Citosol/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Peroxinas/química , Peroxinas/metabolismo , Peroxinas/ultraestrutura , Fator 2 da Biogênese de Peroxissomos/química , Fator 2 da Biogênese de Peroxissomos/metabolismo , Fator 2 da Biogênese de Peroxissomos/ultraestrutura , Peroxissomos/enzimologia , Peroxissomos/ultraestrutura , Poliubiquitina , Transporte Proteico , Domínios RING Finger , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Complexos Ubiquitina-Proteína Ligase/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA