Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38862357

RESUMO

Recent advances in bioacoustics combined with acoustic individual identification (AIID) could open frontiers for ecological and evolutionary research because traditional methods of identifying individuals are invasive, expensive, labor-intensive, and potentially biased. Despite overwhelming evidence that most taxa have individual acoustic signatures, the application of AIID remains challenging and uncommon. Furthermore, the methods most commonly used for AIID are not compatible with many potential AIID applications. Deep learning in adjacent disciplines suggests opportunities to advance AIID, but such progress is limited by training data. We suggest that broadscale implementation of AIID is achievable, but researchers should prioritize methods that maximize the potential applications of AIID, and develop case studies with easy taxa at smaller spatiotemporal scales before progressing to more difficult scenarios.

2.
Landsc Ecol ; 39(4): 83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550967

RESUMO

Context: Artificial light at night (ALAN) is increasing worldwide, with many ecological effects. Aerial insectivores may benefit from foraging on insects congregating at light sources. However, ALAN could negatively impact them by increasing nest visibility and predation risk, especially for ground-nesting species like nightjars (Caprimulgidae). Objectives: We tested predictions based on these two alternative hypotheses, potential foraging benefits vs potential predation costs of ALAN, for two nightjar species in British Columbia: Common Nighthawks (Chordeiles minor) and Common Poorwills (Phalaenoptilus nuttallii). Methods: We modeled the relationship between ALAN and relative abundance using count data from the Canadian Nightjar Survey. We distinguished territorial from extra-territorial Common Nighthawks based on their wingboom behaviour. Results: We found limited support for the foraging benefit hypothesis: there was an increase in relative abundance of extra-territorial Common Nighthawks in areas with higher ALAN but only in areas with little to no urban land cover. Common Nighthawks' association with ALAN became negative in areas with 18% or more urban land cover. We found support for the nest predation hypothesis: the were strong negative associations with ALAN for both Common Poorwills and territorial Common Nighthawks. Conclusions: The positive effects of ALAN on foraging nightjars may be limited to species that can forage outside their nesting territory and to non-urban areas, while the negative effects of ALAN on nesting nightjars may persist across species and landscape contexts. Reducing light pollution in breeding habitat may be important for nightjars and other bird species that nest on the ground. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-024-01875-3.

3.
Ecol Appl ; 30(7): e02140, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32335994

RESUMO

Automated recognition is increasingly used to extract species detections from audio recordings; however, the time required to manually review each detection can be prohibitive. We developed a flexible protocol called "validation prediction" that uses machine learning to predict whether recognizer detections are true or false positives and can be applied to any recognizer type, ecological application, or analytical approach. Validation prediction uses a predictable relationship between recognizer score and the energy of an acoustic signal but can also incorporate any other ecological or spectral predictors (e.g., time of day, dominant frequency) that will help separate true from false-positive recognizer detections. First, we documented the relationship between recognizer score and the energy of an acoustic signal for two different recognizer algorithm types (hidden Markov models and convolutional neural networks). Next, we demonstrated our protocol using a case study of two species, the Common Nighthawk (Chordeiles minor) and Ovenbird (Seiurus aurocapilla). We reduced the number of detections that required validation by 75.7% and 42.9%, respectively, while retaining at least 98% of the true-positive detections. Validation prediction substantially improves the efficiency of using automated recognition on acoustic data sets. Our method can be of use to wildlife monitoring and research programs and will facilitate using automated recognition to mine bioacoustic data sets.


Assuntos
Acústica , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA