Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293016

RESUMO

Humans rely on predictive mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. While initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through conveyance of statistical predictions based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP) - the IC-effect - that occurs over lateral occipital scalp during the timeframe of the N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6-17-year-old children with ASD (n=32) or NT development (n=53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21ms later in ASD, even though timing of initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared to NT children. This delay in the feedback dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by statistical prediction mechanisms.

2.
J Neurosci ; 43(13): 2424-2438, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36859306

RESUMO

Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ilusões , Masculino , Feminino , Humanos , Criança , Adolescente , Potenciais Evocados Visuais , Retroalimentação Sensorial , Retroalimentação , Percepção Visual/fisiologia , Ilusões/fisiologia
3.
Mol Autism ; 13(1): 33, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850696

RESUMO

BACKGROUND: Biological motion imparts rich information related to the movement, actions, intentions and affective state of others, which can provide foundational support for various aspects of social cognition and behavior. Given that atypical social communication and cognition are hallmark symptoms of autism spectrum disorder (ASD), many have theorized that a potential source of this deficit may lie in dysfunctional neural mechanisms of biological motion processing. Synthesis of existing literature provides some support for biological motion processing deficits in autism spectrum disorder, although high study heterogeneity and inconsistent findings complicate interpretation. Here, we attempted to reconcile some of this residual controversy by investigating a possible modulating role for attention in biological motion processing in ASD. METHODS: We employed high-density electroencephalographic recordings while participants observed point-light displays of upright, inverted and scrambled biological motion under two task conditions to explore spatiotemporal dynamics of intentional and unintentional biological motion processing in children and adolescents with ASD (n = 27), comparing them to a control cohort of neurotypical (NT) participants (n = 35). RESULTS: Behaviorally, ASD participants were able to discriminate biological motion with similar accuracy to NT controls. However, electrophysiologic investigation revealed reduced automatic selective processing of upright biologic versus scrambled motion stimuli in ASD relative to NT individuals, which was ameliorated when task demands required explicit attention to biological motion. Additionally, we observed distinctive patterns of covariance between visual potentials evoked by biological motion and functional social ability, such that Vineland Adaptive Behavior Scale-Socialization domain scores were differentially associated with biological motion processing in the N1 period in the ASD but not the NT group. LIMITATIONS: The cross-sectional design of this study does not allow us to definitively answer the question of whether developmental differences in attention to biological motion cause disruption in social communication, and the sample was limited to children with average or above cognitive ability. CONCLUSIONS: Together, these data suggest that individuals with ASD are able to discriminate, with explicit attention, biological from non-biological motion but demonstrate diminished automatic neural specificity for biological motion processing, which may have cascading implications for the development of higher-order social cognition.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adolescente , Criança , Estudos Transversais , Eletroencefalografia , Humanos , Habilidades Sociais
4.
Neuroimage ; 259: 119416, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35764208

RESUMO

Re-entrant feedback processing is a key mechanism of visual object-recognition, especially under compromised viewing conditions where only sparse information is available and object features must be interpolated. Illusory Contour stimuli are commonly used in conjunction with Visual Evoked Potentials (VEP) to study these filling-in processes, with characteristic modulation of the VEP in the ∼100-150 ms timeframe associated with this re-entrant processing. Substantial inter-individual variability in timing and amplitude of feedback-related VEP modulation is observed, raising the question whether this variability might underlie inter-individual differences in the ability to form strong perceptual gestalts. Backward masking paradig ms have been used to study inter-individual variance in the ability to form robust object perceptions before processing of the mask interferes with object-recognition. Some individuals recognize objects when the time between target object and mask is extremely short, whereas others struggle to do so even at longer target-to-mask intervals. We asked whether timing and amplitude of feedback-related VEP modulations were associated with individual differences in resistance to backward masking. Participants (N=40) showed substantial performance variability in detecting Illusory Contours at intermediate target-to-mask intervals (67 ms and 117 ms), allowing us to use kmeans clustering to divide the population into four performance groups (poor, low-average, high-average, superior). There was a clear relationship between the amplitude (but not the timing) of feedback-related VEP modulation and Illusory Contour detection during backward masking. We conclude that individual differences in the strength of feedback processing in neurotypical humans lead to differences in the ability to quickly establish perceptual awareness of incomplete visual objects.


Assuntos
Percepção de Forma , Ilusões , Adulto , Potenciais Evocados Visuais , Retroalimentação , Percepção de Forma/fisiologia , Humanos , Reconhecimento Visual de Modelos/fisiologia , Mascaramento Perceptivo/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia
5.
Autism Res ; 13(12): 2058-2072, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32881408

RESUMO

The brain's ability to encode temporal patterns and predict upcoming events is critical for speech perception and other aspects of social communication. Deficits in predictive coding may contribute to difficulties with social communication and overreliance on repetitive predictable environments in individuals with autism spectrum disorder (ASD). Using a mismatch negativity (MMN) task involving rhythmic tone sequences of varying complexity, we tested the hypotheses that (1) individuals with ASD have reduced MMN response to auditory stimuli that deviate in presentation timing from expected patterns, particularly as pattern complexity increases and (2) amplitude of MMN signal is inversely correlated with level of impairment in social communication and repetitive behaviors. Electroencephalography was acquired as individuals (age 6-21 years) listened to repeated five-rhythm tones that varied in the Shannon entropy of the rhythm across three conditions (zero, medium-1 bit, and high-2 bit entropy). The majority of the tones conformed to the established rhythm (standard tones); occasionally the fourth tone was temporally shifted relative to its expected time of occurrence (deviant tones). Social communication and repetitive behaviors were measured using the Social Responsiveness Scale and Repetitive Behavior Scale-Revised. Both neurotypical controls (n = 19) and individuals with ASD (n = 21) show stepwise decreases in MMN as a function of increasing entropy. Contrary to the result forecasted by a predictive coding hypothesis, individuals with ASD do not differ from controls in these neural mechanisms of prediction error to auditory rhythms of varied temporal complexity, and there is no relationship between these signals and social communication or repetitive behavior measures. LAY SUMMARY: We tested the idea that the brain's ability to use previous experience to influence processing of sounds is weaker in individuals with autism spectrum disorder (ASD) than in neurotypical individuals. We found no difference between individuals with ASD and neurotypical controls in brain wave responses to sounds that occurred earlier than expected in either simple or complex rhythms. There was also no relationship between these brain waves and social communication or repetitive behavior scores.


Assuntos
Transtorno do Espectro Autista , Estimulação Acústica , Adolescente , Percepção Auditiva , Criança , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Adulto Jovem
6.
Front Neurosci ; 13: 985, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619955

RESUMO

Harmaline-induced tremor is one of the most commonly utilized disease models for essential tremor (ET). However, the underlying neural networks involved in harmaline-induced tremor and the degree to which these are a representative model of the pathophysiologic mechanism of ET are incompletely understood. In this study, we evaluated the functional brain network effects induced by systemic injection of harmaline using pharmacological functional magnetic resonance imaging (ph-fMRI) in the swine model. With harmaline administration, we observed significant activation changes in cerebellum, thalamus, and inferior olivary nucleus (ION). In addition, inter-regional correlations in activity between cerebellum and deep cerebellar nuclei and between cerebellum and thalamus were significantly enhanced. These harmaline-induced effects gradually decreased with repeated administration of drug, replicating the previously demonstrated 'tolerance' effect. This study demonstrates that harmaline-induced tremor is associated with activity changes in brain regions previously implicated in humans with ET. Thus, harmaline-induction of tremor in the swine may be a useful model to explore the neurological effects of novel therapeutic agents and/or neuromodulation techniques for ET.

7.
Stereotact Funct Neurosurg ; 94(2): 93-101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27093641

RESUMO

BACKGROUND: The clinical and neurobiological underpinnings of transient nonmotor (TNM) psychiatric symptoms during the optimization of stimulation parameters in the course of subthalamic nucleus deep brain stimulation (STN-DBS) remain under intense investigation. METHODS: Forty-nine patients with refractory Parkinson's disease underwent bilateral STN-DBS implants and were enrolled in a 24-week prospective, naturalistic follow-up study. Patients who exhibited TNM psychiatric manifestations during DBS parameter optimization were evaluated for potential associations with clinical outcome measures. RESULTS: Twenty-nine TNM+ episodes were reported by 15 patients. No differences between TNM+ and TNM- groups were found in motor outcome. However, unlike the TNM- group, TNM+ patients did not report improvement in subsyndromal depression or quality of life. TNM+ episodes were more likely to emerge during bilateral monopolar stimulation of the medial STN. CONCLUSIONS: The occurrence of TNM psychiatric symptoms during optimization of stimulation parameters was associated with the persistence of subsyndromal depression and with lower quality of life ratings at 6 months. The neurobiological underpinnings of TNM symptoms are investigated yet remain difficult to explain.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Depressão/etiologia , Depressão/psicologia , Doença de Parkinson/psicologia , Núcleo Subtalâmico/anatomia & histologia , Núcleo Subtalâmico/cirurgia , Idoso , Ansiedade/diagnóstico , Ansiedade/etiologia , Ansiedade/psicologia , Choro/psicologia , Estimulação Encefálica Profunda/tendências , Depressão/diagnóstico , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/cirurgia , Resultado do Tratamento
8.
Mayo Clin Proc ; 90(6): 773-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046412

RESUMO

OBJECTIVE: To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. PATIENTS AND METHODS: Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. RESULTS: We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. CONCLUSION: These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01809613.


Assuntos
Estimulação Encefálica Profunda , Lobo Límbico/fisiopatologia , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico , Idoso , Feminino , Humanos , Lobo Límbico/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Córtex Motor/patologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia
9.
Neuroimage ; 105: 181-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25451479

RESUMO

Thalamic deep brain stimulation (DBS) is an FDA-approved neurosurgical treatment for medication-refractory essential tremor. Its therapeutic benefit is highly dependent upon stimulation frequency and voltage parameters. We investigated these stimulation parameter-dependent effects on neural network activation by performing functional magnetic resonance imaging (fMRI) during DBS of the ventral lateral (VL) thalamus and comparing the blood oxygenation level-dependent (BOLD) signals induced by multiple stimulation parameter combinations in a within-subject study of swine. Low (10 Hz) and high (130 Hz) frequency stimulation was applied at 3, 5, and 7 V in the VL thalamus of normal swine (n = 5). We found that stimulation frequency and voltage combinations differentially modulated the brain network activity in the sensorimotor cortex, the basal ganglia, and the cerebellum in a parameter-dependent manner. Notably, in the motor cortex, high frequency stimulation generated a negative BOLD response, while low frequency stimulation increased the positive BOLD response. These frequency-dependent differential effects suggest that the VL thalamus is an exemplary target for investigating functional network connectivity associated with therapeutic DBS.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Gânglios da Base/fisiologia , Imageamento por Ressonância Magnética , Masculino , Córtex Sensório-Motor/fisiologia , Suínos
10.
J Neurosci Methods ; 227: 29-34, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24486877

RESUMO

BACKGROUND: Systemic delivery of pharmacologic agents has led to many significant advances in the treatment of neurologic and psychiatric conditions. However, this approach has several limitations, including difficulty penetrating the blood-brain barrier and enzymatic degradation prior to reaching its intended target. Here, we describe the testing of a system allowing intraparenchymal (IPa) infusion of therapeutic agents directly to the appropriate anatomical targets, in a swine model. NEW METHOD: Five male pigs underwent 3.0T magnetic resonance (MR) guided placement of an IPa catheter into the dorso-medial putamen, using a combined system of the Leksell stereotactic arc, a Mayo-developed MRI-compatible pig head frame, and a custom-designed Fred Haer Company (FHC) delivery system. RESULTS: Our results show hemi-lateral coverage of the pig putamen is achievable from a single infusion point and that the volume of the bolus detected in each animal is uniform (1544±420mm(3)). COMPARISON WITH EXISTING METHOD: The IPa infusion system is designed to isolate the intracranial catheter from bodily-induced forces while delivering drugs and molecules into the brain tissue by convection-enhanced delivery, with minimal-to-no catheter track backflow. CONCLUSION: This study presents an innovative IPa drug delivery system, which includes a sophisticated catheter and implantable pump designed to deliver drugs and various molecules in a precise and controlled manner with limited backflow. It also demonstrates the efficacy of the delivery system, which has the potential to radically impact the treatment of a wide range of neurologic conditions. Lastly, the swine model used here has certain advantages for translation into clinical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lateralidade Funcional , Bombas de Infusão Implantáveis , Animais , Convecção , Sistemas de Liberação de Medicamentos/instrumentação , Gadolínio DTPA/metabolismo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Putamen/efeitos dos fármacos , Putamen/fisiologia , Suínos , Fatores de Tempo
11.
PLoS One ; 8(10): e75768, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130742

RESUMO

To succeed in a dynamically changing world, animals need to predict their environments. Humans, in fact, exhibit such a strong desire for consistency that one of the most well-established findings in social psychology is the effort people make to maintain consistency among their beliefs, attitudes, and behavior. However, displeasure with unpredictability leads to a potential paradox, because a positive outcome that exceeds one's expectations often leads to increased subjective value and positive affect, not the opposite. We tested the hypothesis that two evolutionarily-conserved evaluation processes underlie goal-directed behavior: (1) consistency, concerned with prediction errors, and (2) valuation, concerned with outcome utility. Rhesus monkeys (Macaca mulatta) viewed a food item and then were offered an identical, better, or worse food, which they could accept or reject. The monkeys ultimately accepted all offers, attesting to the influence of the valuation process. However, they were slower to accept the unexpected offers, and they exhibited aversive reactions, especially to the better-than-expected offers, repeatedly turning their heads and looking away before accepting the food item. Our findings (a) provide evidence for two separable evaluation processes in primates, consistency and value assessment, (b) reveal a direct relationship between consistency assessment and emotional processes, and (c) show that our wariness with events that are much better than expected is shared with other social primates.


Assuntos
Macaca mulatta/psicologia , Animais , Emoções/fisiologia , Motivação/fisiologia
12.
Biol Psychiatry ; 74(12): 917-926, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23993641

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. METHODS: The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). RESULTS: Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. CONCLUSIONS: Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms.


Assuntos
Estimulação Encefálica Profunda , Sistema Límbico/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Biofísica , Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Sistema Límbico/irrigação sanguínea , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/irrigação sanguínea , Oxigênio/sangue , Suínos
13.
PLoS One ; 8(2): e56640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441210

RESUMO

BACKGROUND: Deep Brain Stimulation (DBS) of the nucleus accumbens (NAc) has previously been investigated clinically for the treatment of several psychiatric conditions, including obsessive-compulsive disorder and treatment resistant depression. However, the mechanism underlying the therapeutic benefit of DBS, including the brain areas that are activated, remains largely unknown. Here, we utilized 3.0 T functional Magnetic Resonance Imaging (fMRI) changes in Blood Oxygenation Level-Dependent (BOLD) signal to test the hypothesis that NAc/internal capsule DBS results in global neural network activation in a large animal (porcine) model METHODS: Animals (n = 10) were implanted in the NAc/internal capsule with DBS electrodes and received stimulation (1, 3, and 5 V, 130 Hz, and pulse widths of 100 and 500 µsec). BOLD signal changes were evaluated using a gradient echo-echo planar imaging (GRE-EPI) sequence in 3.0 T MRI. We used a normalized functional activation map for group analysis and applied general linear modeling across subjects (FDR<0.001). The anatomical location of the implanted DBS lead was confirmed with a CT scan RESULTS: We observed stimulation-evoked activation in the ipsilateral prefrontal cortex, insula, cingulate and bilateral parahippocampal region along with decrease in BOLD signal in the ipsilateral dorsal region of the thalamus. Furthermore, as the stimulation voltage increased from 3 V to 5 V, the region of BOLD signal modulation increased in insula, thalamus, and parahippocampal cortex and decreased in the cingulate and prefrontal cortex. We also demonstrated that right and left NAc/internal capsule stimulation modulates identical areas ipsilateral to the side of the stimulation CONCLUSIONS: Our results suggest that NAc/internal capsule DBS results in modulation of psychiatrically important brain areas notably the prefrontal cortex, cingulate, and insular cortex, which may underlie the therapeutic effect of NAc DBS in psychiatric disorders. Finally, our fMRI setup in the large animal may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Mapeamento Encefálico , Cápsula Interna/fisiologia , Masculino , Reprodutibilidade dos Testes , Sus scrofa
14.
PLoS One ; 7(10): e46240, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056270

RESUMO

The human mind is built for approximations. When considering the value of a large aggregate of different items, for example, we typically do not summate the many individual values. Instead, we appear to form an immediate impression of the likeability of the option based on the average quality of the full collection, which is easier to evaluate and remember. While useful in many situations, this affect heuristic can lead to apparently irrational decision-making. For example, studies have shown that people are willing to pay more for a small set of high-quality goods than for the same set of high-quality goods with lower-quality items added [e.g. 1]. We explored whether this kind of choice behavior could be seen in other primates. In two experiments, one in the laboratory and one in the field, using two different sets of food items, we found that rhesus monkeys preferred a highly-valued food item alone to the identical item paired with a food of positive but lower value. This finding provides experimental evidence that, under certain conditions, macaque monkeys follow an affect heuristic that can cause them to prefer less food. Conservation of this affect heuristic could account for similar 'irrational' biases in humans, and may reflect a more general complexity reduction strategy in which averages, prototypes, or stereotypes represent a set or group.


Assuntos
Evolução Biológica , Animais , Preferências Alimentares , Macaca mulatta , Masculino
15.
Q J Exp Psychol (Hove) ; 64(12): 2301-15, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21929474

RESUMO

In humans, the order of receiving sequential rewards can significantly influence the overall subjective utility of an outcome. For example, people subjectively rate receiving a large reward by itself significantly higher than receiving the same large reward followed by a smaller one (Do, Rupert, & Wolford, 2008). This result is called the peak-end effect. A comparative analysis of order effects can help determine the generality of such effects across primates, and we therefore examined the influence of reward-quality order on decision making in three rhesus macaque monkeys (Macaca mulatta). When given the choice between a high-low reward sequence and a low-high sequence, all three monkeys preferred receiving the high-value reward first. Follow-up experiments showed that for two of the three monkeys their choices depended specifically on reward-quality order and could not be accounted for by delay discounting. These results provide evidence for the influence of outcome order on decision making in rhesus monkeys. Unlike humans, who usually discount choices when a low-value reward comes last, rhesus monkeys show no such peak-end effect.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Recompensa , Animais , Macaca mulatta/psicologia
16.
PLoS One ; 6(4): e18719, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559513

RESUMO

BACKGROUND: Anatomical and physiological differences between the central and peripheral visual systems are well documented. Recent findings have suggested that vision in the periphery is not just a scaled version of foveal vision, but rather is relatively poor at representing spatial and temporal phase and other visual features. Shapiro, Lu, Huang, Knight, and Ennis (2010) have recently examined a motion stimulus (the "curveball illusion") in which the shift from foveal to peripheral viewing results in a dramatic spatial/temporal discontinuity. Here, we apply a similar analysis to a range of other spatial/temporal configurations that create perceptual conflict between foveal and peripheral vision. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate how the differences between foveal and peripheral vision affect super-threshold vision, we created a series of complex visual displays that contain opposing sources of motion information. The displays (referred to as the peripheral escalator illusion, peripheral acceleration and deceleration illusions, rotating reversals illusion, and disappearing squares illusion) create dramatically different perceptions when viewed foveally versus peripherally. We compute the first-order and second-order directional motion energy available in the displays using a three-dimensional Fourier analysis in the (x, y, t) space. The peripheral escalator, acceleration and deceleration illusions and rotating reversals illusion all show a similar trend: in the fovea, the first-order motion energy and second-order motion energy can be perceptually separated from each other; in the periphery, the perception seems to correspond to a combination of the multiple sources of motion information. The disappearing squares illusion shows that the ability to assemble the features of Kanisza squares becomes slower in the periphery. CONCLUSIONS/SIGNIFICANCE: The results lead us to hypothesize "feature blur" in the periphery (i.e., the peripheral visual system combines features that the foveal visual system can separate). Feature blur is of general importance because humans are frequently bringing the information in the periphery to the fovea and vice versa.


Assuntos
Movimento (Física) , Visão Ocular/fisiologia , Aceleração , Adulto , Análise de Fourier , Fóvea Central/fisiologia , Humanos , Percepção de Movimento/fisiologia , Percepção , Software , Percepção Espacial , Fatores de Tempo , Campos Visuais
17.
Curr Drug Abuse Rev ; 3(3): 163-74, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21054262

RESUMO

In the central nervous system (CNS), adenosine plays an important role in regulating neuronal activity and modulates signaling by other neurotransmitters, including GABA, glutamate, and dopamine. Adenosine suppresses neurotransmitter release, reduces neuronal excitability, and regulates ion channel function through activation of four classes of G protein-coupled receptors, A(1), A(2A), A(2B), and A(3). Central adenosine are largely controlled by nucleoside transporters, which transport adenosine levels across the plasma membrane. Adenosine has been shown to modulate cortical glutamate signaling and ventral-tegmental dopaminergic signaling, which are involved in several aspects of alcohol use disorders. Acute ethanol elevates extracellular adenosine levels by selectively inhibiting the type 1 equilibrative nucleoside transporter, ENT1. Raised adenosine levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A(1) receptors in the cerebellum, striatum, and cerebral cortex. Recently, we have shown that pharmacological inhibition or genetic deletion of ENT1 reduces the expression of excitatory amino acid transporter 2 (EAAT2), the primary regulator of extracellular glutamate, in astrocytes. These lines of evidence support a central role for adenosine-mediated glutamate signaling and the involvement of astrocytes in regulating ethanol intoxication and preference. In this paper, we discuss recent findings on the implication of adenosine signaling in alcohol use disorders.


Assuntos
Adenosina/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Intoxicação Alcoólica/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Humanos , Proteínas de Transporte de Nucleosídeos/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA