Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Stem Cell Res Ther ; 15(1): 186, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926849

RESUMO

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) and their differentiated cell types have a great potential for tissue repair and regeneration. While the primary focus of using hiPSCs has historically been to regenerate damaged tissue, emerging studies have shown a more potent effect of hiPSC-derived paracrine factors on tissue regeneration. However, the precise contents of the transplanted hiPSC-derived cell secretome are ambiguous. This is mainly due to the lack of tools to distinguish cell-specific secretome from host-derived proteins in a complex tissue microenvironment in vivo. METHODS: In this study, we present the generation and characterization of a novel hiPSC line, L274G-hiPSC, expressing the murine mutant methionyl-tRNA synthetase, L274GMmMetRS, which can be used for tracking the cell specific proteome via biorthogonal non-canonical amino acid tagging (BONCAT). We assessed the trilineage differentiation potential of the L274G-hiPSCs in vitro and in vivo. Furthermore, we assessed the cell-specific proteome labelling in the L274G-hiPSC derived cardiomyocytes (L274G-hiPSC-CMs) in vitro following co-culture with wild type human umbilical vein derived endothelial cells and in vivo post transplantation in murine hearts. RESULTS: We demonstrated that the L274G-hiPSCs exhibit typical hiPSC characteristics and that we can efficiently track the cell-specific proteome in their differentiated progenies belonging to the three germ lineages, including L274G-hiPSC-CMs. Finally, we demonstrated cell-specific BONCAT in transplanted L274G-hiPSC-CMs. CONCLUSION: The novel L274G-hiPSC line can be used to study the cell-specific proteome of hiPSCs in vitro and in vivo, to delineate mechanisms underlying hiPSC-based cell therapies for a variety of regenerative medicine applications.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Proteoma , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Proteoma/metabolismo , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Aminoácidos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metionina tRNA Ligase/metabolismo , Metionina tRNA Ligase/genética
2.
Cancer Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38781455

RESUMO

Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity represent a potential approach to prevent obesity-associated PDAC. Here, we examined whether decreasing obesity through physical activity (PA) and/or dietary changes could decrease inflammation in humans and prevent obesity-associated PDAC in mice. Comparison of circulating inflammatory-associated cytokines in subjects (overweight and obese) before and after a PA intervention revealed PA lowered systemic inflammatory cytokines. Mice with pancreatic-specific inducible KrasG12D expression were exposed to PA and/or dietary interventions during and after obesity-associated cancer initiation. In mice with concurrent diet-induced obesity (DIO) and KrasG12D expression, the PA intervention led to lower weight gain, suppressed systemic inflammation, delayed tumor progression, and decreased pro-inflammatory signals in the adipose tissue. However, these benefits were not as evident when obesity preceded pancreatic KrasG12D expression. Combining PA with diet-induced weight loss (DI-WL) delayed obesity-associated PDAC progression in the genetically engineered mouse model, but neither PA alone nor combined with DI-WL or chemotherapy prevented PDAC tumor growth in orthotopic PDAC models regardless of obesity status. PA led to upregulation of IL-15ra in adipose tissue. Adipose-specific overexpression of IL-15 slowed PDAC growth but only in non-obese mice. Overall, our study suggests that PA alone or combined with DI-WL can reduce inflammation and delay obesity-associated PDAC development or progression. Lifestyle interventions that prevent or manage obesity or therapies that target weight loss-related molecular pathways could prevent progression of PDAC.

3.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014068

RESUMO

Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with ß-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic ß-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in ß- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in ß-cells was sufficient to restore ß-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of ß-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.

4.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855322

RESUMO

Development of the mammary gland requires both proper hormone signaling and cross talk between the stroma and epithelium. While estrogen receptor (ERα) expression in the epithelium is essential for normal gland development, the role of this receptor in the stroma is less clear. Moreover, several lines of evidence suggest that mouse phenotypes of in utero exposure to endocrine disruption act through mesenchymal ERα in the developing fetus. We utilized a Twist2-cre mouse line to knock out mesenchymal ERα. Herein, we assessed mammary gland development in the context of mesenchymal ERα deletion. We also tested the effect of in utero bisphenol A (BPA) exposure to alter the tumor susceptibility in the mouse mammary tumor virus-neu (MMTV-neu) breast cancer mouse model. Mesenchymal ERα deletion resulted in altered reproductive tract development and atypical cytology associated with estrous cycling. The mammary gland demonstrated mature epithelial extension unlike complete ERα-knockout mice, but ductal extension was delayed and reduced compared to ERα-competent mice. Using the MMTV-Neu cancer susceptibility model, ERα-intact mice exposed to BPA had reduced tumor-free survival and overall survival compared to BPA-exposed mice having mesenchymal ERα deletion. This difference is specific for BPA exposure as vehicle-treated animals had no difference in tumor development between mice expressing and not expressing mesenchymal ERα. These data demonstrate that mesenchymal ERα expression is not required for ductal extension, nor does it influence cancer risk in this mouse model but does influence the cancer incidence associated with in utero BPA exposure.


Assuntos
Neoplasias , Receptores de Estrogênio , Camundongos , Animais , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos Knockout , Epitélio/metabolismo , Neoplasias/metabolismo , Glândulas Mamárias Animais/patologia
5.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711764

RESUMO

BACKGROUND & AIMS: Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity might prevent obesity-associated PDAC. Here, we examined whether decreasing obesity by increased physical activity (PA) and/or dietary changes would decrease inflammation in humans and prevent PDAC in mice. METHODS: Circulating inflammatory-associated cytokines of overweight and obese subjects before and after a PA intervention were compared. PDAC pre-clinical models were exposed to PA and/or dietary interventions after obesity-associated cancer initiation. Body composition, tumor progression, growth, fibrosis, inflammation, and transcriptomic changes in the adipose tissue were evaluated. RESULTS: PA decreased the levels of systemic inflammatory cytokines in overweight and obese subjects. PDAC mice on a diet-induced obesity (DIO) and PA intervention, had delayed weight gain, decreased systemic inflammation, lower grade pancreatic intraepithelial neoplasia lesions, reduced PDAC incidence, and increased anti-inflammatory signals in the adipose tissue compared to controls. PA had additional cancer prevention benefits when combined with a non-obesogenic diet after DIO. However, weight loss through PA alone or combined with a dietary intervention did not prevent tumor growth in an orthotopic PDAC model. Adipose-specific targeting of interleukin (IL)-15, an anti-inflammatory cytokine induced by PA in the adipose tissue, slowed PDAC growth. CONCLUSIONS: PA alone or combined with diet-induced weight loss delayed the progression of PDAC and reduced systemic and adipose inflammatory signals. Therefore, obesity management via dietary interventions and/or PA, or modulating weight loss related pathways could prevent obesity-associated PDAC in high-risk obese individuals.

6.
J Am Vet Med Assoc ; 260(11): 1283-1290, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35943914

RESUMO

Advancing equality and equity in society is creating positive change, and the time has come to critically evaluate veterinary medicine, which, by all metrics, lacks diversity. To keep pace with increasingly diverse demographics and recent surges in pet ownership among all racial/ethnic groups, significant efforts to enhance diversity, equity, inclusion, and belonging (DEIB) must occur in veterinary colleges and the profession. Recruiting more underrepresented students, building pipelines for diverse faculty/staff, and creating inclusive, welcoming environments where all can thrive are critical steps toward enhancing DEIB within our organizations and profession. Our goal is to share experiences and lessons learned from our intentional commitment to strengthen DEIB, with the hope that our journey will be helpful to others. Increasing diversity in the veterinary profession will be facilitated through removing barriers, creating inclusive work environments where all people feel they belong, and ensuring fair and equitable hiring and personnel management practices. These steps should in turn improve access and quality of veterinary care, ensure we are more representative of the communities we serve, increase revenue, and preserve the human-animal bond. "You cannot change any society unless you take responsibility for it, unless you see yourself belonging to it, and responsible for changing it." - Grace Lee Boggs.


Assuntos
Diversidade Cultural , Animais , Humanos
7.
Am J Cancer Res ; 12(3): 1309-1322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411237

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most lethal skin cancer. Due to ultraviolet light-induced damage, cSCCs have a high mutation rate, but some genes are more frequently mutated in aggressive cSCCs. Lysine-specific histone methyltransferase 2D (KMT2D) has a two-fold higher mutation frequency in metastatic cSCCs relative to primary non-metastatic associated cSCCs. The role of KMT2D in more aggressive phenotypes in cSCC is uncharacterized. Studies of other tumor types suggest that KMT2D acts to suppress tumor development. To determine whether KMT2D loss has an impact on tumor characteristics, we disrupted KMT2D in a cSCC cell line using CRISPR-cas9 and performed phenotypic analyses. KMT2D loss modestly increased cell proliferation and colony formation (1.4- and 1.6-fold respectively). Cells lacking KMT2D showed increased rates of migration and faster cell cycle progression. In xenograft models, tumors with KMT2D loss showed slight increases in mitotic indices. Collectively, these findings suggest that KMT2D loss-of-function mutations may promote more aggressive and invasive behaviors in cSCC, suggesting that KMT2D-related pathways could be targets for cancer therapies. Future studies to determine the downstream genes and mechanism of phenotypic effect are needed.

9.
Breast Cancer Res ; 23(1): 65, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118960

RESUMO

BACKGROUND: Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. METHODS: The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. RESULTS: Knockout or depletion of RALA inhibited orthotopic primary tumor growth, spontaneous metastasis, and experimental metastasis of TNBC cells in vivo. Conversely, knockout of RALB increased TNBC growth and metastasis. In vitro, RALA and RALB had antagonistic effects on TNBC migration, invasion, and viability with RALA generally supporting and RALB opposing these processes. In BC patient populations, elevated RALA but not RALB expression is significantly associated with poor outcome across all BC subtypes and specifically within TNBC patient cohorts. Immunohistochemical staining for RALA in patient cohorts confirmed the prognostic significance of RALA within the general BC population and the TNBC population specifically. BQU57, a small molecule inhibitor of RALA and RALB, decreased TNBC cell line viability, sensitized cells to paclitaxel in vitro and decreased tumor growth and metastasis in TNBC cell line and PDX models in vivo. CONCLUSIONS: Together, these data demonstrate important but paradoxical roles for RALA and RALB in the pathogenesis of TNBC and advocate further investigation of RALA as a target for the precise treatment of metastatic TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Metástase Neoplásica , Paclitaxel/uso terapêutico , Prognóstico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Proteínas ral de Ligação ao GTP/genética
10.
J Vis Exp ; (159)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32510518

RESUMO

Metastasis, the primary cause of morbidity and mortality for most cancer patients, can be challenging to model preclinically in mice. Few spontaneous metastasis models are available. Thus, the experimental metastasis model involving tail-vein injection of suitable cell lines is a mainstay of metastasis research. When cancer cells are injected into the lateral tail-vein, the lung is their preferred site of colonization. A potential limitation of this technique is the accurate quantification of the metastatic lung tumor burden. While some investigators count macrometastases of a pre-defined size and/or include micrometastases following sectioning of tissue, others determine the area of metastatic lesions relative to normal tissue area. Both of these quantification methods can be exceedingly difficult when the metastatic burden is high. Herein, we demonstrate an intravenous injection model of lung metastasis followed by an advanced method for quantifying metastatic tumor burden using image analysis software. This process allows for investigation of multiple end-point parameters, including average metastasis size, total number of metastases, and total metastasis area, to provide a comprehensive analysis. Furthermore, this method has been reviewed by a veterinary pathologist board-certified by the American College of Veterinary Pathologists (SEK) to ensure accuracy.


Assuntos
Neoplasias Pulmonares/patologia , Patologia/métodos , Cauda , Animais , Contagem de Células , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Processamento de Imagem Assistida por Computador , Injeções Intravenosas , Camundongos , Metástase Neoplásica
11.
Infect Immun ; 87(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061142

RESUMO

Half of all humans harbor Helicobacter pylori in their stomachs. Helical cell shape is thought to facilitate H. pylori's ability to bore into the protective mucus layer in a corkscrew-like motion, thereby enhancing colonization of the stomach. H. pylori cell shape mutants show impaired colonization of the mouse stomach, highlighting the importance of cell shape in infection. To gain a deeper understanding of how helical cell morphology promotes host colonization by H. pylori, we used three-dimensional confocal microscopy to visualize the clinical isolate PMSS1 and an isogenic straight-rod mutant (Δcsd6) within thick longitudinal mouse stomach sections. We also performed volumetric image analysis to quantify the number of bacteria residing within corpus and antral glands in addition to measuring total CFU. We found that straight rods show attenuation during acute colonization of the stomach (1 day or 1 week postinfection) as measured by total CFU. Our quantitative imaging revealed that wild-type bacteria extensively colonized antral glands at 1 week postinfection, while csd6 mutants showed variable colonization of the antrum at this time point. During chronic infection (1 or 3 months postinfection), total CFU were highly variable but similar for wild-type and straight rods. Both wild-type and straight rods persisted and expanded in corpus glands during chronic infection. However, the straight rods showed reduced inflammation and disease progression. Thus, helical cell shape contributes to tissue interactions that promote inflammation during chronic infection, in addition to facilitating niche acquisition during acute infection.


Assuntos
Infecções por Helicobacter/microbiologia , Helicobacter pylori/citologia , Helicobacter pylori/crescimento & desenvolvimento , Estômago/patologia , Animais , Aderência Bacteriana , Doença Crônica , Feminino , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Camundongos Endogâmicos C57BL , Antro Pilórico/microbiologia , Antro Pilórico/patologia , Estômago/microbiologia
12.
Sci Rep ; 9(1): 5488, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940846

RESUMO

Insertional mutagenesis is a powerful means of identifying cancer drivers in animal models. We used the Sleeping Beauty (SB) transposon/transposase system to identify activated oncogenes in hematologic cancers in wild-type mice and mice that express a stabilized cyclin E protein (termed cyclin ET74AT393A). Cyclin E governs cell division and is misregulated in human cancers. Cyclin ET74AT393A mice develop ineffective erythropoiesis that resembles early-stage human myelodysplastic syndrome, and we sought to identify oncogenes that might cooperate with cyclin E hyperactivity in leukemogenesis. SB activation in hematopoietic precursors caused T-cell leukemia/lymphomas (T-ALL) and pure red blood cell erythroleukemias (EL). Analysis of >12,000 SB integration sites revealed markedly different oncogene activations in EL and T-ALL: Notch1 and Ikaros were most common in T-ALL, whereas ETS transcription factors (Erg and Ets1) were targeted in most ELs. Cyclin E status did not impact leukemogenesis or oncogene activations. Whereas most SB insertions were lost during culture of EL cell lines, Erg insertions were retained, indicating Erg's key role in these neoplasms. Surprisingly, cyclin ET74AT393A conferred growth factor independence and altered Erg-dependent differentiation in EL cell lines. These studies provide new molecular insights into erythroid leukemia and suggest potential therapeutic targets for human leukemia.


Assuntos
Ciclina E/genética , Leucemia Eritroblástica Aguda/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transposases/genética , Animais , Técnicas de Cultura de Células , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos , Mutagênese Insercional , Proteínas Oncogênicas/genética , Regulador Transcricional ERG/genética
13.
Vet Pathol ; 56(1): 24-32, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30381015

RESUMO

There is a growing need to quantitate or "score" lesions in mouse models of human disease, for correlation with human disease and to establish their clinical relevance. Several standard semiquantitative scoring schemes have been adapted for nonneoplastic lesions; similarly, the pathologist must carefully select an approach to score mouse models of cancer. Genetically engineered mouse models with a continuum of precancerous and cancerous lesions and xenogeneic models of various derivations present unique challenges for the pathologist. Important considerations include experimental design, understanding of the human disease being modeled, standardized classification of lesions, and approaches for semiquantitative and/or quantitative scoring in the model being evaluated. Quantification should be considered for measuring the extent of neoplasia and expression of tumor biomarkers. Semiquantitative scoring schemes have been devised that include severity, frequency, and distribution of lesions. Although labor-intensive, scoring mouse models of cancer provides numerical data that enable statistical analysis and greater translational impact.


Assuntos
Engenharia Genética/veterinária , Neoplasias Experimentais/patologia , Animais , Biomarcadores Tumorais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Processamento de Imagem Assistida por Computador , Camundongos
14.
ILAR J ; 59(1): 40-50, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31053847

RESUMO

Over 60% of NIH extramural funding involves animal models, and approximately 80% to 90% of these are mouse models of human disease. It is critical to translational research that animal models are accurately characterized and validated as models of human disease. Pathology analysis, including histopathology, is essential to animal model studies by providing morphologic context to in vivo, molecular, and biochemical data; however, there are many considerations when incorporating pathology endpoints into an animal study. Mice, and in particular genetically modified models, present unique considerations because these modifications are affected by background strain genetics, husbandry, and experimental conditions. Comparative pathologists recognize normal pathobiology and unique phenotypes that animals, including genetically modified models, may present. Beyond pathology, comparative pathologists with research experience offer expertise in animal model development, experimental design, optimal specimen collection and handling, data interpretation, and reporting. Critical pathology considerations in the design and use of translational studies involving animals are discussed, with an emphasis on mouse models.


Assuntos
Modelos Animais de Doenças , Patologia/métodos , Animais , Projetos de Pesquisa , Pesquisa Translacional Biomédica/métodos
15.
Int J Cancer ; 140(4): 853-863, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27790711

RESUMO

Colorectal cancer (CRC) results from the accumulation of gene mutations and epigenetic alterations in colon epithelial cells, which promotes CRC formation through deregulating signaling pathways. One of the most commonly deregulated signaling pathways in CRC is the transforming growth factor ß (TGF-ß) pathway. Importantly, the effects of TGF-ß signaling inactivation in CRC are modified by concurrent mutations in the tumor cell, and these concurrent mutations determine the ultimate biological effects of impaired TGF-ß signaling in the tumor. However, many of the mutations that cooperate with the deregulated TGF-ß signaling pathway in CRC remain unknown. Therefore, we sought to identify candidate driver genes that promote the formation of CRC in the setting of TGF-ß signaling inactivation. We performed a forward genetic screen in mice carrying conditionally inactivated alleles of the TGF-ß receptor, type II (Tgfbr2) using Sleeping Beauty (SB) transposon mediated mutagenesis. We used TAPDANCE and Gene-centric statistical methods to identify common insertion sites (CIS) and, thus, candidate tumor suppressor genes and oncogenes within the tumor genome. CIS analysis of multiple neoplasms from these mice identified many candidate Tgfbr2 cooperating genes and the Wnt/ß-catenin, Hippo and MAPK pathways as the most commonly affected pathways. Importantly, the majority of candidate genes were also found to be mutated in human CRC. The SB transposon system provides an unbiased method to identify Tgfbr2 cooperating genes in mouse CRC that are functionally relevant and that may provide further insight into the pathogenesis of human CRC.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Colorretais/genética , Elementos de DNA Transponíveis , Genes Neoplásicos , Genes Supressores de Tumor , Estudos de Associação Genética/métodos , Mutagênese Insercional , Proteínas de Neoplasias/fisiologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/fisiologia , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Análise de Sequência de DNA , Transdução de Sinais/fisiologia , Especificidade da Espécie
16.
Proc Natl Acad Sci U S A ; 113(37): E5425-33, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27582469

RESUMO

Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.


Assuntos
Desaminase APOBEC-1/genética , Proteínas Argonautas/genética , Neoplasias Embrionárias de Células Germinativas/genética , Proteínas de Ligação a RNA/genética , Neoplasias Testiculares/genética , Desaminase APOBEC-1/metabolismo , Animais , Proteínas Argonautas/metabolismo , Modelos Animais de Doenças , Epigênese Genética/genética , Predisposição Genética para Doença , Células Germinativas/metabolismo , Células Germinativas/patologia , Humanos , Masculino , Meiose/genética , Camundongos , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Edição de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Testiculares/patologia
17.
Immunity ; 45(2): 389-401, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27521269

RESUMO

CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.


Assuntos
Antígenos Transformantes de Poliomavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/imunologia , Animais , Carcinogênese , Diferenciação Celular , Células Cultivadas , Senescência Celular , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/terapia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno , Microambiente Tumoral
18.
Proc Natl Acad Sci U S A ; 113(31): 8795-800, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439864

RESUMO

Insulin receptor substrate-1 (IRS-1) is a signaling adaptor protein that interfaces with many pathways activated in lung cancer. It has been assumed that IRS-1 promotes tumor growth through its ability to activate PI3K signaling downstream of the insulin-like growth factor receptor. Surprisingly, tumors with reduced IRS-1 staining in a human lung adenocarcinoma tissue microarray displayed a significant survival disadvantage, especially within the Kirsten rat sarcoma viral oncogene homolog (KRAS) mutant subgroup. Accordingly, adenoviral Cre recombinase (AdCre)-treated LSL-Kras/Irs-1(fl/fl) (Kras/Irs-1(-/-)) mice displayed increased tumor burden and mortality compared with controls. Mechanistically, IRS-1 deficiency promotes Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling via the IL-22 receptor, resulting in enhanced tumor-promoting inflammation. Treatment of Kras/Irs-1(+/+) and Kras/Irs-1(-/-) mice with JAK inhibitors significantly reduced tumor burden, most notably in the IRS-1-deficient group.


Assuntos
Adenocarcinoma/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Substratos do Receptor de Insulina/deficiência , Proteínas Substratos do Receptor de Insulina/genética , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Transdução de Sinais/genética
19.
JAMA Otolaryngol Head Neck Surg ; 142(4): 330-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26892902

RESUMO

IMPORTANCE: Surgical cure of head and neck squamous cell carcinoma (HNSCC) remains hampered by inadequately resected tumors and poor recognition of lesions with malignant potential. BLZ-100 is a chlorotoxin-based, tumor-targeting agent that has not yet been studied in HNSCC. OBJECTIVE: To evaluate BLZ-100 uptake in models of HNSCC and oral dysplasia. DESIGN, SETTING, AND PARTICIPANTS: This was an observational study (including sensitivity and specificity analysis) of BLZ-100 uptake in an orthotopic xenograft mouse model of HNSCC and a carcinogen-induced dysplasia model of hamster cheek pouches. INTERVENTIONS: Various HNSCC xenografts were established in the tongues of NOD-scid IL2Rgammanull (NSG) mice. BLZ-100 was intravenously injected and fluorescence uptake was measured. To induce dysplasia, the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) was applied to the cheek pouch of Golden Syrian hamsters for 9 to16 weeks. BLZ-100 was subcutaneously injected, and fluorescence uptake was measured. MAIN OUTCOMES AND MEASURES: The signal-to-background ratio (SBR) of BLZ-100 was measured in tumor xenografts. To calculate the sensitivity and specificity of BLZ-100 uptake, a digital grid was placed over tissue sections and correlative histologic sections to discretely measure fluorescence intensity and presence of tumor; a receiver operating characteristic (ROC) curve was then plotted. In the hamster dysplasia model, cheeks were graded according to dysplasia severity. The SBR of BLZ-100 was compared among dysplasia grades. RESULTS: In HNSCC xenografts, BLZ-100 demonstrated a mean (SD) SBR of 2.51 (0.47). The ROC curve demonstrated an area under the curve (AUC) of 0.89; an SBR of 2.50 corresponded to 92% sensitivity and 74% specificity. When this analysis was focused on the tumor and nontumor interface, the AUC increased to 0.97; an SBR of 2.50 corresponded to 95% sensitivity and 91% specificity. DMBA treatment of hamster cheek pouches generated lesions representing all grades of dysplasia. The SBR of high-grade dysplasia was significantly greater than that of mild-to-moderate dysplasia (2.31 [0.71] vs 1.51 [0.34], P = .006). CONCLUSIONS AND RELEVANCE: BLZ-100 is a sensitive and specific marker of HNSCC and can distinguish high-risk from low-risk dysplasia. BLZ-100 has the potential to serve as an intraoperative guide for tumor margin excision and identification of premalignant lesions.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Verde de Indocianina/análogos & derivados , Verde de Indocianina/farmacocinética , Neoplasias Bucais/diagnóstico , Neoplasias Experimentais , Venenos de Escorpião/farmacologia , Venenos de Escorpião/farmacocinética , Língua/patologia , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Corantes/farmacologia , Cricetinae , Neoplasias de Cabeça e Pescoço/metabolismo , Xenoenxertos , Humanos , Processamento de Imagem Assistida por Computador , Radioisótopos do Iodo , Mesocricetus , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Bucais/metabolismo , Curva ROC , Carcinoma de Células Escamosas de Cabeça e Pescoço
20.
Cancer Res ; 75(20): 4283-91, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471914

RESUMO

There is a need in surgical oncology for contrast agents that can enable real-time intraoperative visualization of solid tumors that can enable complete resections while sparing normal surrounding tissues. The Tumor Paint agent BLZ-100 is a peptide-fluorophore conjugate that can specifically bind solid tumors and fluoresce in the near-infrared range, minimizing light scatter and signal attenuation. In this study, we provide a preclinical proof of concept for use of this imaging contrast agent as administered before surgery to dogs with a variety of naturally occurring spontaneous tumors. Imaging was performed on excised tissues as well as intraoperatively in a subset of cases. Actionable contrast was achieved between tumor tissue and surrounding normal tissues in adenocarcinomas, squamous cell carcinomas, mast cell tumors, and soft tissue sarcomas. Subcutaneous soft tissue sarcomas were labeled with the highest fluorescence intensity and greatest tumor-to-background signal ratio. Our results establish a foundation that rationalizes clinical studies in humans with soft tissue sarcoma, an indication with a notably high unmet need.


Assuntos
Meios de Contraste , Diagnóstico por Imagem/métodos , Corantes Fluorescentes , Neoplasias/diagnóstico , Adolescente , Animais , Criança , Pré-Escolar , Meios de Contraste/administração & dosagem , Diagnóstico por Imagem/instrumentação , Modelos Animais de Doenças , Cães , Feminino , Corantes Fluorescentes/administração & dosagem , Humanos , Verde de Indocianina/administração & dosagem , Verde de Indocianina/análogos & derivados , Cuidados Intraoperatórios , Masculino , Neoplasias/patologia , Reprodutibilidade dos Testes , Venenos de Escorpião/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA