Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Anal Chem ; 92(14): 9482-9492, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32628451

RESUMO

A combined data acquisition and data processing strategy for improving the sensitivity and resolution of ion mobility measurements is described. This strategy is implemented on a commercially available drift tube ion mobility-mass spectrometry (IM-MS) instrument and utilizes both an existing ion multiplexing strategy to achieve up to an 8-fold gain in ion signal and a new postacquisition data reconstruction technique, termed "high resolution demultiplexing" (HRdm), to improve resolution in the ion mobility dimension. A series of isomeric mixtures were qualitatively investigated with HRdm, including biologically relevant lipids and carbohydrates, which were successfully resolved by HRdm, including two monosaccharide regioisomers which differed in drift time by only 0.8%. For a complex trisaccharide isomer mixture, HRdm was able to resolve 5 out of 6 components. An analysis of two-peak resolution (Rpp) and peak-to-peak separation (ΔP) indicated that HRdm performs with an effective resolving power (Rp) of between 180 to 250 for the highest deconvolution settings. Overall analysis times and drift time measurement precision were found to be unaffected between standard and HRdm processed data sets, which allowed statistically identical collision cross section values to be directly determined from all ion mobility spectra.


Assuntos
Carboidratos/química , Espectrometria de Mobilidade Iônica/instrumentação , Espectrometria de Mobilidade Iônica/métodos , Lipídeos/química , Isomerismo , Espectrometria de Massas , Software , Fatores de Tempo
2.
J Chem Phys ; 152(10): 104304, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171216

RESUMO

The ground-state intermolecular dissociation energies D0(S0) of supersonic-jet cooled intermolecular complexes of 1-naphthol (1NpOH) with the bi- and tricycloalkanes trans-decalin, cis-decalin, and adamantane were measured using the stimulated-emission-pumping/resonant two-photon ionization (SEP-R2PI) method. Using UV/UV holeburning, we identified two isomers (A and B) of the adamantane and trans-decalin complexes and four isomers (A-D) of the cis-decalin complex. For 1NpOH·adamantane A and B, the D0(S0) values are 21.6 ± 0.15 kJ/mol and 21.2 ± 0.32 kJ/mol, those of 1NpOH·trans-decalin A and B are 28.7 ± 0.3 kJ/mol and 28.1 ± 0.9 kJ/mol, and those of 1NpOH·cis-decalin A and B are 28.9 ± 0.15 kJ/mol and 28.7 ± 0.3 kJ/mol. Upon S0 → S1 electronic excitation of the 1NpOH moiety, the dissociation energies of adamantane, trans-decalin, and the cis-decalin isomer C change by <1% and those of cis-decalin isomers A, B, and D increase only slightly (1%-3%). This implies that the hydrocarbons are dispersively adsorbed to a naphthalene "face." Calculations using the dispersion-corrected density functional theory methods B97-D3 and B3LYP-D3 indeed predict that the stable structures have face geometries. The B97-D3 calculated D0(S0) values are within 1 kJ/mol of the experiment, while B3LYP-D3 predicts D0 values that are 1.4-3.3 kJ/mol larger. Although adamantane has been recommended as a "dispersion-energy donor," the binding energies of the trans- and cis-decalin adducts to 1NpOH are 30% larger than that of adamantane. In fact, the D0 value of 1NpOH·adamantane is close to that of 1NpOH·cyclohexane, reflecting the nearly identical contact layer between the two molecules.

3.
Annu Rev Phys Chem ; 71: 189-211, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32070214

RESUMO

The gas-phase ground-state dissociation energy D0(S0) of an isolated and cold bimolecular complex is a fundamental measure of the intermolecular interaction strength between its constituents. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parameterization of dispersion-corrected density functionals or force-field models that are used in fields ranging from crystallography to biochemistry. We review experimental measurements of the gas-phase D0(S0) and D0(S1) values of 55 different M⋅S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell solvent atom or molecule. The experiments employ the triply resonant SEP-R2PI laser method, which involves M-centered (S0 → S1) electronic excitation, followed by S1 → S0 stimulated emission spanning a range of S0 state vibrational levels. At sufficiently high vibrational energy, vibrational predissociation of the M⋅S complex occurs. A total of 49 dissociation energies were bracketed to within ≤1.0 kJ/mol, providing a large experimental database of accurate noncovalent interactions.

4.
J Chem Phys ; 150(23): 234303, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31228890

RESUMO

The stimulated-emission-pumping/resonant 2-photon ionization (SEP-R2PI) method was used to determine the intermolecular dissociation energies D0 of jet-cooled 1-naphthol(1NpOH)·S complexes, where S is a linear molecule (N2, CO, CO2, OCS, N2O, and ethyne) or symmetric-top molecule (2-butyne) that contains double or triple bonds. The dissociation energies D0(S0) are bracketed as follows: 6.68 ± 0.08 kJ/mol for S=N2, 7.7 ± 0.8 kJ/mol for CO, 12.07 ± 0.10 kJ/mol for CO2, 13.03 ± 0.01 kJ/mol for N2O, 14.34 ± 0.08 kJ/mol for ethyne, 15.0 ± 1.35 kJ/mol for OCS, and 29.6 ± 2.4 kJ/mol for 2-butyne. The minimum-energy structures, vibrational wavenumbers, and zero-point vibrational energies were calculated using the dispersion-corrected density functional theory methods such as B97-D3 and B3LYP-D3 with the def2-QZVPP basis set. These predict that N2 and CO are dispersively bound Face complexes (S bound to a naphthalene Face), while CO2, N2O, and OCS adsorb into the "Notch" between the naphthyl and OH groups; these are denoted as Notch complexes. Ethyne and 2-butyne form Edge complexes involving H-bonds from the -OH group of 1NpOH to the center of the molecule. The presence of a double or triple bond or an aromatic C=C bond within S does not lead to a specific calculated geometry (Face, Notch or Edge). However, a correlation exists between the structure and the sign of the quadrupole moment component Θzz of S: negative Θzz correlates with Face or Notch, while positive Θzz correlates with Edge geometries.

5.
J Chem Phys ; 149(20): 204311, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501267

RESUMO

We have measured the intermolecular dissociation energies D 0 of supersonically cooled 1-naphthol (1NpOH) complexes with solvents S = furan, thiophene, 2,5-dimethylfuran, and tetrahydrofuran. The naphthol OH forms non-classical H-bonds with the aromatic π-electrons of furan, thiophene, and 2,5-dimethylfuran and a classical H-bond with the tetrahydrofuran O atom. Using the stimulated-emission pumping resonant two-photon ionization method, the ground-state D 0(S 0) values were bracketed as 21.8 ± 0.3 kJ/mol for furan, 26.6 ± 0.6 kJ/mol for thiophene, 36.5 ± 2.3 kJ/mol for 2,5-dimethylfuran, and 37.6 ± 1.3 kJ/mol for tetrahydrofuran. The dispersion-corrected density functional theory methods B97-D3, B3LYP-D3 (using the def2-TZVPP basis set), and ωB97X-D [using the 6-311++G(d,p) basis set] predict that the H-bonded (edge) isomers are more stable than the face isomers bound by dispersion; experimentally, we only observe edge isomers. We compare the calculated and experimental D 0 values and extend the comparison to the previously measured 1NpOH complexes with cyclopropane, benzene, water, alcohols, and cyclic ethers. The dissociation energies of the nonclassically H-bonded complexes increase roughly linearly with the average polarizability of the solvent, α ¯ (S). By contrast, the D 0 values of the classically H-bonded complexes are larger, increase more rapidly at low α ¯ (S), but saturate for large α ¯ (S). The calculated D 0(S 0) values for the cyclopropane, benzene, furan, and tetrahydrofuran complexes agree with experiment to within 1 kJ/mol and those of thiophene and 2,5-dimethylfuran are ∼3 kJ/mol smaller than experiment. The B3LYP-D3 calculated D 0 values exhibit the lowest mean absolute deviation (MAD) relative to experiment (MAD = 1.7 kJ/mol), and the B97-D3 and ωB97X-D MADs are 2.2 and 2.6 kJ/mol, respectively.

6.
J Chem Phys ; 149(3): 034306, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037256

RESUMO

Using the stimulated-emission-pumping/resonant 2-photon ionization (SEP-R2PI) method, we have determined accurate intermolecular dissociation energies D0 of supersonic jet-cooled intermolecular complexes of 1-naphthol (1NpOH) with alkanes, 1NpOH·S, with S = methane, ethane, propane, and n-butane. Experimentally, the smaller alkanes form a single minimum-energy structure, while 1-naphthol·n-butane forms three different isomers. The ground-state dissociation energies D0(S0) for the complexes with propane and n-butane (isomers A and B) were bracketed within ±0.5%, being 16.71 ± 0.08 kJ/mol for S = propane and 20.5 ± 0.1 kJ/mol for isomer A and 20.2 ± 0.1 kJ/mol for isomer B of n-butane. All 1NpOH·S complexes measured previously exhibit a clear dissociation threshold in their hot-band detected SEP-R2PI spectra, but weak SEP-R2PI bands are observed above the putative dissociation onset for the methane and ethane complexes. We attribute these bands to long-lived complexes that retain energy in rotation-type intermolecular vibrations, which couple only weakly to the dissociation coordinates. Accounting for this, we find dissociation energies of D0(S0) = 7.98 ± 0.55 kJ/mol (±7%) for S = methane and 14.5 ± 0.28 kJ/mol (±2%) for S = ethane. The D0 values increase by only 1% upon S0 → S1 excitation of 1-naphthol. The dispersion-corrected density functional theory methods B97-D3, B3LYP-D3, and ωB97X-D predict that the n-alkanes bind dispersively to the naphthalene "Face." The assignment of the complexes to Face structures is supported by the small spectral shifts of the S0 → S1 electronic origins, which range from +0.5 to -15 cm-1. Agreement with the calculated dissociation energies D0(S0) is quite uneven, the B97-D3 values agree within 5% for propane and n-butane, but differ by up to 20% for methane and ethane. The ωB97X-D method shows good agreement for methane and ethane but overestimates the D0(S0) values for the larger n-alkanes by up to 20%. The agreement of the B3LYP-D3 D0 values is intermediate between the other two methods.

7.
J Chem Phys ; 148(13): 134302, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626863

RESUMO

We measured accurate intermolecular dissociation energies D0 of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with the noble gases Ne, Ar, Kr, and Xe and with N2, using the stimulated-emission pumping resonant two-photon ionization method. The ground-state values D0(S0) for the 1NpOH⋅S complexes with S= Ar, Kr, Xe, and N2 were bracketed to be within ±3.5%; they are 5.67 ± 0.05 kJ/mol for S = Ar, 7.34 ± 0.07 kJ/mol for S = Kr, 10.8 ± 0.28 kJ/mol for S = Xe, 6.67 ± 0.08 kJ/mol for isomer 1 of the 1NpOH⋅N2 complex, and 6.62 ± 0.22 kJ/mol for the corresponding isomer 2. For S = Ne, the upper limit is D0 < 3.36 kJ/mol. The dissociation energies increase by 1%-5% upon S0 → S1 excitation of the complexes. Three dispersion-corrected density functional theory (DFT-D) methods (B97-D3, B3LYP-D3, and ωB97X-D) predict that the most stable form of these complexes involves dispersive binding to the naphthalene "face." A more weakly bound edge isomer is predicted in which the S moiety is H-bonded to the OH group of 1NpOH; however, no edge isomers were observed experimentally. The B97-D3 calculated dissociation energies D0(S0) of the face complexes with Ar, Kr, and N2 agree with the experimental values within <5%, but the D0(S0) for Xe is 12% too low. The B3LYP-D3 and ωB97X-D calculated D0(S0) values exhibit larger deviations to both larger and smaller dissociation energies. For comparison to 1-naphthol, we calculated the D0(S0) of the carbazole complexes with S = Ne, Ar, Kr, Xe, and N2 using the same DFT-D methods. The respective experimental values have been previously determined to be within <2%. Again, the B97-D3 results are in the best overall agreement with experiment.

8.
Phys Chem Chem Phys ; 19(24): 16276-16279, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28604859

RESUMO

Alonso and Zenobi (AZ) recently claimed "a comprehensive theoretical description of negative ion formation in UV-MALDI" (Phys. Chem. Chem. Phys., 2016, 18, 19574). Emphasizing photoelectrons, it is found to be unphysical in several respects, including violation of charge and mass conservation, and in the treatment of ablation, expansion and electron capture. It is not internally consistent, and ions created by the photoelectron mechanism are given artificial preference. Although AZ claimed the "first proposal for a comprehensive theoretical description of negative ion formation in UV-MALDI", the Coupled Physical and Chemical Dynamics model has successfully reproduced a number of phenomena relevant to negative ion production over many years.

9.
Chimia (Aarau) ; 71(1-2): 7-12, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28259189

RESUMO

The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.

10.
J Chem Phys ; 145(16): 164304, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27802641

RESUMO

The 1-naphthol⋅cyclopropane intermolecular complex is formed in a supersonic jet and investigated by resonant two-photon ionization (R2PI) spectroscopy, UV holeburning, and stimulated emission pumping (SEP)-R2PI spectroscopy. Two very different structure types are inferred from the vibronic spectra and calculations. In the "edge" isomer, the OH group of 1-naphthol is directed towards a C-C bond of cyclopropane, the two ring planes are perpendicular. In the "face" isomer, the cyclopropane is adsorbed on one of the π-aromatic faces of the 1-naphthol moiety, the ring planes are nearly parallel. Accurate ground-state intermolecular dissociation energies D0 were measured with the SEP-R2PI technique. The D0(S0) of the edge isomer is bracketed as 15.35 ± 0.03 kJ/mol, while that of the face isomer is 16.96 ± 0.12 kJ/mol. The corresponding excited-state dissociation energies D0(S1) were evaluated using the respective electronic spectral shifts. Despite the D0(S0) difference of 1.6 kJ/mol, both isomers are observed in the jet in similar concentrations, so they must be separated by substantial potential energy barriers. Intermolecular binding energies, De, and dissociation energies, D0, calculated with correlated wave function methods and two dispersion-corrected density-functional methods are evaluated in the context of these results. The density functional calculations suggest that the face isomer is bound solely by dispersion interactions. Binding of the edge isomer is also dominated by dispersion, which makes up two thirds of the total binding energy.

11.
Annu Rev Anal Chem (Palo Alto Calif) ; 9(1): 365-85, 2016 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-27070182

RESUMO

The coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects.

12.
J Am Soc Mass Spectrom ; 27(5): 810-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26914233

RESUMO

A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ.

13.
J Mass Spectrom ; 51(1): 79-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26757075

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) ion formation mechanisms were investigated by comparison of isomers of dihydroxybenzoic acid (DHB). These exhibit substantially different MALDI performance, the basis for which was not previously understood. Luminescence decay curves are used here to estimate excited electronic state properties relevant for the coupled chemical and physical dynamics (CPCD) model. With these estimates, the CPCD predictions for relative total ion and analyte ion yields are in good agreement with the data for the DHB isomers. Predictions of a thermal equilibrium model were also compared and found to be incompatible with the data. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Gentisatos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Isomerismo , Luminescência , Termodinâmica
14.
J Chem Phys ; 145(24): 244314, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28049305

RESUMO

Intermolecular dissociation energies D0(S0) of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with cyclopentane, cyclohexane, and cycloheptane were determined to within <0.5% using the stimulated-emission pumping resonant two-photon ionization method. The ground state D0(S0) values are bracketed as 20.23±0.07 kJ/mol for 1NpOH⋅cyclopentane, 20.34±0.04 kJ/mol for 1NpOH⋅cyclohexane, and 22.07±0.10 kJ/mol for two isomers of 1NpOH⋅cycloheptane. Upon S0→S1 excitation of the 1-naphthol chromophore, the dissociation energies of the 1NpOH⋅cycloalkane complexes increase from 0.1% to 3%. Three dispersion-corrected density functional theory (DFT) methods predict that the cycloalkane moieties are dispersively bound to the naphthol face via London-type interactions, similar to the "face" isomer of the 1-naphthol⋅cyclopropane complex [S. Maity et al., J. Chem. Phys. 145, 164304 (2016)]. The experimental and calculated D0(S0) values of the cyclohexane and cyclopentane complexes are practically identical, although the polarizability of cyclohexane is ∼20% larger than that of cyclopentane. Investigation of the calculated pairwise atomic contributions to the D2 dispersion energy reveals that this is due to subtle details of the binding geometries of the cycloalkanes relative to the 1-naphthol ring. The B97-D3 DFT method predicts dissociation energies within about ±1% of experiment, including the cyclopropane face complex. The B3LYP-D3 and ωB97X-D calculated dissociation energies are 7-9 and 13-20% higher than the experimental D0(S0) values. Without dispersion correction, all the complexes are calculated to be unbound.

15.
Angew Chem Int Ed Engl ; 54(51): 15462-7, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26530790

RESUMO

Large, non-symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square-planar coordination of tetravalent Pd(II) , yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L6 containing 60 well-defined chiral centers in its flower-like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L3 Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2', and dimer, 3 and 3', can be obtained directly from L by its coordination to trans- or cis-N-pyridyl-coordinating Pd(II) . These intriguing, water-resistant, stable supramolecular assemblies have been thoroughly described by (1) H DOSY NMR, mass spectrometry, circular dichroism, molecular modelling, and drift tube ion-mobility mass spectrometry.

16.
Nat Commun ; 6: 8613, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456460

RESUMO

FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae--Erg26p, Homo sapiens--NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound.


Assuntos
3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Antifúngicos/química , Colesterol/análogos & derivados , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/genética , 3-Hidroxiesteroide Desidrogenases/genética , Candida albicans , Colesterol/química , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Mutação , Proteínas de Saccharomyces cerevisiae/genética
17.
J Am Soc Mass Spectrom ; 26(10): 1645-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265040

RESUMO

The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.

18.
Inorg Chem ; 54(12): 6055-61, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26039343

RESUMO

A novel modular approach to electron-deficient and electron-rich M6L4 cages is presented. From the same starting compound, via a minor modulation of the synthesis route, two C3-symmetric ligands L1 and L2 with different electronic properties are obtained in good yield. The trifluoro-triethynylbenzene-based ligand L1 is more electron-deficient than the well-known 2,4,6-tri(4-pyridyl)-1,3,5-triazine, while the trimethoxy-triethynylbenzene-based ligand L2 is more electron-rich than the corresponding benzene analogue. Complexation of the ligands with cis-protected square-planar [(dppp)Pt(OTf)2] or [(dppp)Pd(OTf)2] corner-complexes yields two electron-deficient (1a and 1b) and two electron-rich (2a and 2b) M6L4 cages. The single crystal X-ray diffraction study of 1a and 2a confirms the expected octahedral shape with a ca. 2000 Å(3) cavity and ca. 11 Å wide apertures. The crystallographically determined diameters of 1a and 2a are 3.7 and 3.6 nm, respectively. The hydrodynamic diameters obtained from the DOSY NMR in CDCl3:CD3OD (4:1), and diameters calculated from collision cross sections (CCS) acquired by ion-mobility mass spectrometry (IM-MS) were for all four cages similar. In solution, the cage structures have diameters between 3.3 to 3.6 nm, while in the gas phase the corresponding diameters varied between 3.4 to 3.6 nm. In addition to the structural information the relative stabilities of the Pt6L4 and Pd6L4 cages were studied in the gas phase by collision-induced dissociation (CID) experiments, and the photophysical properties of the ligands L1 and L2 and cages 1a, 1b, 2a, and 2b were studied by UV-vis and fluorescence spectroscopy.

19.
Rapid Commun Mass Spectrom ; 28(19): 2134-40, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156603

RESUMO

RATIONALE: Excited state pooling reactions are a central part of some models of ultraviolet matrix-assisted laser desorption/ionization (MALDI) mechanisms. Evidence has been found for pooling in several matrix materials, but a recent report of pure exponential fluorescence decay at MALDI-relevant laser fluences suggested that 2,4,6-trihydroxy-acetophenone (THAP) may be an example of a matrix in which pooling does not occur (Lin et al., Rapid Commun. Mass Spectrom. 2014, 28, 77). However, those data were instrumentally limited in dynamic range and signal/noise ratio, and the conclusion does not take into account several aspects of THAP excited state dynamics. METHODS: Using time-correlated single photon counting, and absorption and emission spectroscopies, the excited state dynamics of THAP are reexamined. RESULTS: Like many other aromatic ketones and acetophenone, isolated THAP molecules undergo very efficient intersystem crossing. No fluorescence is observed in dilute solution. In the solid state, efficient fluorescence reappears, but is non-exponential even at very low excitation intensity. The solvent used for sample preparation was found to have a large effect on the spectra and decay curves. Needle-like crystals seem to be correlated with reduced intersystem crossing. CONCLUSIONS: THAP solid state fluorescence is entirely due to intermolecular interactions. Activation of fluorescence, instead of quenching, is a clear indicator of delocalized excited state phenomena in THAP. Contrary to the conclusions of Lin et al., the greatly increased singlet lifetime in the solid state substantially increases the probability that pooling-type reactions are indeed involved in ionization processes. The sensitivity of fluorescence and phosphorescence on sample morphology appears to reflect changes in intermolecular interactions due to crystal packing. Pooling charge separation pathways based on known triplet-triplet ionization reactions of aromatic ketones are proposed.


Assuntos
Acetofenonas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluorescência
20.
J Am Soc Mass Spectrom ; 25(9): 1521-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24912435

RESUMO

Thermal models of ultraviolet MALDI ionization based on the polar fluid concept are re-examined. Key components are very high solvating power of the fluidized matrix and consequent low reaction-free energy, attainment of thermal equilibrium in the fluid, and negligible recombination losses. None of these are found to hold in a MALDI event. The reaction-free energy in the hot matrix must be near the gas phase value, ion formation is too slow to approach equilibrium, and geminate recombination of autoprotolysis pairs greatly increases the initial loss rate. The maximum thermal ion yield is estimated to be many orders of magnitude below experimental values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA